• Title/Summary/Keyword: 유방의 윤곽선

Search Result 7, Processing Time 0.027 seconds

A Study on the Setting of Breast Measurement Points on 3D Scan Data

  • Sohn, Boo-Hyun;Han, Hyun-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.81-90
    • /
    • 2020
  • In this paper, we propose setting measurement point in the 3D scan data based on the manual measurement data. The optimal 3D body scan postures and measurement points for automatic measurement of breast were set up. The outer breast point may be different depending on the body shape or standing posture as it is on the line connected from the bisecting point of the lateral waist thickness to front armpit point. Therefore, it is necessary to consider the breast-related outer point proposed in this study. And many researches need to reduce the differences between MAM and 3D dimension items associated with the upper breast point. When measuring depth, the difference by pressing in MAM should be taken into account. And the differences in flexion depending on breast type can make a difference in the 3D measurement. So the measurement method in 3D scan should be further studied depending on the types of breast and verified by multiple subjects.

Measurement of Breast Volume and the Area of Breast Base Using 3D Measurement System (3차원 측정시스템을 이용한 유방부피 및 유저면적의 측정)

  • 이현영;이옥경;홍경희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.2
    • /
    • pp.270-276
    • /
    • 2003
  • Methodology was suggested to analyze breast volume, base area of breast bulk. and surface area of breast using the 3D measurement system. Thirty-seven middle-aged (30s-40s) women wearing 80A brassiere were participated in this study. Image of the upper body was captured by Phase-shifting moire. The posture of the subject was adjusted to get the full image of the right breast. Rapidform 2001 was used for the analysis of the images. The mean breast volume was 547.0㎤ and mean base area of breast bulk was 235. I$\textrm{cm}^2$ It was also found that the volume(r=0.169) and surface area of breast(r=10.242) were loosely correlated with the circumference difference between top and under breast. Therefore, it is noted that current selection criterion of cup size based on the difference in the two kinds of breast circumference is inadequate. The result of this study is expected to contribute to the design of ergonomic brassiere as well as surgical operations in the medical field.

A Study on Breast Type Classification & Discrimination Using Manual Measurement- Focusing on Korean Women in Their 20s -

  • Sohn, Boo-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.137-146
    • /
    • 2020
  • The manual measurements of 182 unmarried women subjects in their 20s was classified 4-breast types. For the breast type classification, 4 factors were identified, such as overall breast factor, upper breast internal shape factor, breast volume factor, and lower breast external shape factor. The breast shapes were 'breast with well-grown upper part', 'flat breast', 'breast with well-grown lower part', and 'protruded breast'. The breast types can be differentiated in 10 items of actual anthropometric dimension the length between frontal neck point and nipple point, length between lateral neck point and nipple point, length between the breast inner points, nipple to nipple breadth, diameter below the breast, inner depth of breast, outer length of breast, length below the breast, length between breast outer point and upper breast point, and contour line length below the breast.

Comparison of Ultrasound Image Quality using Edge Enhancement Mask (경계면 강조 마스크를 이용한 초음파 영상 화질 비교)

  • Jung-Min, Son;Jun-Haeng, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.157-165
    • /
    • 2023
  • Ultrasound imaging uses sound waves of frequencies to cause physical actions such as reflection, absorption, refraction, and transmission at the edge between different tissues. Improvement is needed because there is a lot of noise due to the characteristics of the data generated from the ultrasound equipment, and it is difficult to grasp the shape of the tissue to be actually observed because the edge is vague. The edge enhancement method is used as a method to solve the case where the edge surface looks clumped due to a decrease in image quality. In this paper, as a method to strengthen the interface, the quality improvement was confirmed by strengthening the interface, which is the high-frequency part, in each image using an unsharpening mask and high boost. The mask filtering used for each image was evaluated by measuring PSNR and SNR. Abdominal, head, heart, liver, kidney, breast, and fetal images were obtained from Philips epiq5g and affiniti70g and Alpinion E-cube 15 ultrasound equipment. The program used to implement the algorithm was implemented with MATLAB R2022a of MathWorks. The unsharpening and high-boost mask array size was set to 3*3, and the laplacian filter, a spatial filter used to create outline-enhanced images, was applied equally to both masks. ImageJ program was used for quantitative evaluation of image quality. As a result of applying the mask filter to various ultrasound images, the subjective image quality showed that the overall contour lines of the image were clearly visible when unsharpening and high-boost mask were applied to the original image. When comparing the quantitative image quality, the image quality of the image to which the unsharpening mask and the high boost mask were applied was evaluated higher than that of the original image. In the portal vein, head, gallbladder, and kidney images, the SNR, PSNR, RMSE and MAE of the image to which the high-boost mask was applied were measured to be high. Conversely, for images of the heart, breast, and fetus, SNR, PSNR, RMSE and MAE values were measured as images with the unsharpening mask applied. It is thought that using the optimal mask according to the image will help to improve the image quality, and the contour information was provided to improve the image quality.

The comparison of lesion localization methods in breast lymphoscintigraphy (Breast lymphoscintigraphy 검사 시 체표윤곽을 나타내는 방법의 비교)

  • Yeon, Joon ho;Hong, Gun chul;Kim, Soo yung;Choi, Sung wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.74-80
    • /
    • 2015
  • Purpose Breast lymphoscintigraphy is an important technique to present for body surface precisely, which shows a lymph node metastasis of malignant tumors at an early stage and is performed before and after surgery in patients with breast cancer. In this study, we evaluated several methods of body outline imaging to present exact location of lesions, as well as compared respective exposure doses. Materials and Methods RANDO phantom and SYMBIA T-16 were used for obtaining imaging. A lesion and an injection site were created by inserting a point source of 0.11 MBq on the axillary sentinel lymph node and 37 MBq on the right breast, respectively. The first method for acquiring the image was used by drawing the body surface of phantom for 30 sec using $Na^{99m}TcO_4$ as a point source. The second, the image was acquired with $^{57}Co$ flood source for 30 seconds on the rear side and the left side of the phantom, the image as the third method was obtained using a syringe filled with 37 MBq of $Na^{99m}TcO_4$ in 10 ml of saline, and as the fourth, we used a photon energy and scatter energy of $^{99m}Tc$ emitting from phantom without any addition radiation exposure. Finally, the image was fused the scout image and the basal image of SPECT/CT using MATLAB$^{(R)}$ program. Anterior and lateral images were acquired for 3 min, and radiation exposure was measured by the personal exposure dosimeter. We conducted preference of 10 images from nuclear medicine doctors by the survey. Results TBR values of anterior and right image in the first to fifth method were 334.9 and 117.2 ($1^{st}$), 266.1 and 124.4 ($2^{nd}$), 117.4 and 99.6 ($3^{rd}$), 3.2 and 7.6 ($4^{th}$), and 565.6 and 141.8 ($5^{th}$). And also exposure doses of these method were 2, 2, 2, 0, and $30{\mu}Sv$, respectively. Among five methods, the fifth method showed the highest TBR value as well as exposure dose, where as the fourth method showed the lowest TBR value and exposure dose. As a result, the last method ($5^{th}$) is the best method and the fourth method is the worst method in this study. Conclusion Scout method of SPECT/CT can be useful that provides the best values of TBR and the best score of survey result. Even though personal exposure dose when patients take scout of SPECT/CT was higher than another scan, it was slight level comparison to 1 mSv as the dose limit to non-radiation workers. If the scout is possible to less than 80 kV, exposure dose can be reduced, and also useful lesion localization provided.

  • PDF

Improved Breast Irradiation Techniques Using Multistatic Fields or Three Dimensional Universal Compensators (Multistatic Field또는 3차원 공용보상체를 사용한 유방의 방사선 조사법의 평가)

  • Han Youngyih;Cho Jae Ho;Park Hee Chul;Chu Sung Sil;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.24-33
    • /
    • 2002
  • Purpose : In order to improve dose homogeneity and to reduce acute toxicity in tangential whole breast radiotherapy, we evaluated two treatment techniques using multiple static fields or universal compensators. Materials and Methods : 1) Multistatic field technique : Using a three dimensional radiation treatment planning system, Adac Pinnacle 4.0, we accomplished a conventional wedged tangential plan. Examining the isodose distributions, a third field which blocked overdose regions was designed and an opposing field was created by using an automatic function of RTPS. Weighting of the beams was tuned until an ideal dose distribution was obtained. Another pair of beams were added when the dose homogeneity was not satisfactory. 2) Universal compensator technique : The breast shapes and sizes were obtained from the CT images of 20 patients who received whole breast radiation therapy at our institution. The data obtained were averaged and a pair of universal physical compensators were designed for the averaged data. DII (Dose Inhomogeneity Index : percentage volume of PTV outside $95\~105\%$ of the prescribed dose) $D_{max}$ (the maximum point dose in the PTV) and isodose distributions for each technique were compared. Results : The multistatic field technique was found to be superior to the conventional technique, reducing the mean value of DII by $14.6\%$ (p value<0.000) and the $D_{max}$ by $4.7\%$ (p value<0.000). The universal compensator was not significantly superior to the conventional technique since it decreased $D_{max}$ by $0.3\%$ (p value=0.867) and reduced DII by $3.7\%$ (p value=0.260). However, it decreased the value of DII by maximum $18\%$ when patients' breast shapes fitted in with the compensator geometry. Conclusion : The multistatic field technique is effective for improving dose homogeneity for whole breast radiation therapy and is applicable to all patients, whereas the use of universal compensators is effective only in patients whose breast shapes fit inwith the universal compensator geometry, and thus has limited applicability.

Transmission Dose Estimation Algorithm for Tissue Deficit (조직 결손에 대한 투과선량 계산 알고리즘 보정)

  • Yun Hyong Geun;Chie Eui Kyu;Huh Soon Nyung;Lee Hyoung Koo;Woo Hong Gyun;Shin Kyo Chul;Ha Sung Whan
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.186-192
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry. In this study, previous algorithm for estimation of transmission dose was modified for use in cases with tissue deficit. Materials and Methods : The beam data was measured with flat solid phantom in various conditions of tissue deficit. New algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. The algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients using multiple sheets of solid phantoms. Results : The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within ${\pm}1.0\%$ in most situations and within ${\pm}3.0\%$ in experimental settings with irregular contours mimicking breast cancer treatment set-up. Conclusion : Developed algorithm could accurately reflect the effect of tissue deficit and irregularly shaped body contour on transmission dosimetry.