• Title/Summary/Keyword: 유발강우

Search Result 253, Processing Time 0.028 seconds

Analysis of Rainfall Triggering Debris Flow Using HyGIS-GRM (HyGIS-GRM을 이용한 토석류 유발 강우 특성 분석)

  • Park, Jung-Sool;Kim, Kyung-Tak;Choi, Yun-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1317-1321
    • /
    • 2010
  • 기후변화의 영향으로 국지성 집중호우가 증가함에 따라 토석류 발생면적과 피해규모는 지속적으로 증가추세에 있다. 강우는 토석류의 유발 뿐 만 아니라 토석류 발생규모에 직접적인 영향을 미치므로 유발강우에 대한 분석은 향후 토석류 대응을 위한 경보기준이나 대책의 설계목표를 설정하는데 있어 매우 중요한 정보를 제공하며(김경석, 2008) 누가강우량, 강우강도, 강우지속시간 및 선행 강우량 등의 강우 특성과 토석류 발생과의 관계를 제시하기 위한 다양한 연구가 수행되고 있다. 본 연구에서는 토석류를 유발하는 강우 특성을 레이더 강우와 분포형 수문모형을 이용하여 분석하였다. 특정 격자안에 토석류 발생부가 많이 포함될수록 강우에 의한 영향이 컸을 것이라는 가정을 바탕으로 항공사진을 이용해 취득한 발달 단계별 토석류 맵핑 결과를 활용하였으며 지점강우를 이용하여 조건부 합성방법으로 보정된 1 km 해상도의 레이더 보정강우와 GIS와 연계된 분포형 강우-유출 모형인 HyGIS-GRM을 이용하여 격자별 강우량을 산정하고 강우특성을 비교하였다. 연구결과 토석류는 흐름누적수가 0인 능선부위에서 대부분 발생하였으며 발생부 포인트가 많이 포함될수록 2~3시간 동안의 강우강도가 매우 크게 제시되었다.

  • PDF

Rainfall Threshold (ID curve) for Landslide Initiation and Prediction Considering Antecedent Rainfall (선행강우를 고려한 산사태 유발 강우기준(ID curve) 분석)

  • Hong, Moon-Hyun;Kim, Jung-Hwan;Jung, Gyung-Ja;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.15-27
    • /
    • 2016
  • This study was conducted to suggest a landslide triggering rainfall threshold (ID curve) for landslide prediction by considering the effect of antecedent rainfall. 202 rainfall data including domestic landslide and rainfall records were used in this study. In order to consider the effect of antecedent rainfall, rainfall data were analyzed by changing Inter Event Time Definition (IETD) and IETD based ID curve were presented by regression analysis. Compared to the findings of the previous studies, the presented ID curve has a tendency to predict the landslides occurring at a relatively low rainfall intensity. It is shown that the proposed ID curve is appropriate and realistic for predicting landslides through the validation of proposed ID curve using records of landslides in 2014. Based on this analysis, it is found that the longer IETD, the greater the effect of antecedent rainfall, and the steeper the gradient of ID curve. It is also found that the rainfall threshold (intensity) is higher for the short period rainfall and lower for the long period rainfall.

Characteristics of Basin Topography and Rainfall Triggering Debris Flow (토석류 발생 지형과 유발 강우 특성 분석)

  • Kim, Kyung-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5C
    • /
    • pp.263-271
    • /
    • 2008
  • Investigation and analysis of the debris flow characteristics such as basin topography, geologic conditions of initiation location and triggering rainfall are required to systematically mitigate debris flow hazard. In this paper, 48 debris flows which had caused some damages to the highway in the past 5 years are investigated and their characteristics of basic topography and triggering rainfall are analyzed. Debris flows are found to occur in small basins having the area of $0.01{\sim}0.65km^2$ range and mostly initiated by the surficial failure of natural slope having the inclination of 29~55 degree during the intense rainfall. As for the triggering rainfall, rainfall of 2 to 5 year recurrence frequency are found to be able to trigger the debris flow and magnitude of debris flow in a basin could depend on the rainfall intensity and cumulative amount.

A Study on Behavior Characteristics and Triggering Rainfall of Debris Flow (토석류의 거동 특성 및 유발강우에 관한 연구)

  • Jang, Changbong;Choi, Youngnam;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2017
  • In this study, the behavior characteristics and triggering rainfall of debris flow were investigated on the basis of DB constructed by performing field investigation and collecting the rainfall data at the sites where debris flow occurred around the west of Gangwon and adjacent areas during the last 10 years. For hill slope and channelized type of debris flow, its behavior characteristic was analyzed through runout channel of debris flow divided into zone of initiation, transportation and deposition and its magnitude was estimated by considering erosion at zones of initiation and transportation. Some considerations related to establishment of landslide forecasting criterion were raised by comparing the analyzed results of analysis of rainfall at the time of debris-flow occurrence with the previous researches about the triggering rainfall of debris flow. In addition, an ID curve of inducing debris flow adequate to the investigated site was proposed and compared with results of previous study.

Estimation of Rainfall-Runoff Erosivity Factor Using Scale Invariance Property (스케일 성질을 이용한 강우침식인자 추정)

  • Lee, Joon-Hak;Jung, Young-Hun;Oh, Kyoung-Doo;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.169-173
    • /
    • 2010
  • 토양침식은 농경지 면적의 감소 및 사태 유발, 토사의 하천 유입으로 인한 생태계 교란 및 오염물질 확산 등의 피해를 야기시킨다. 토양침식을 유발하는 가장 큰 인자는 일반적으로 강우로 알려져 있으며, 연구대상 지역의 토양침식량을 산정하기 위해서는 강우침식인자를 추정하는 과정을 거치게 된다. 이와 관련하여 정필균(1983), 박정환 등(2000)은 각각 1980년, 1996년 이전의 강우자료를 이용하여 우리나라 강우침식인자를 제시한 바 있으나, 기상청에서 제공하는 1시간 단위 강우량으로 30분 최대 강우강도를 추정하는 것이 제한되어, 근래에 들어서는 연강수량을 이용하여 강우침식인자를 산정할 수 있는 국외 추정식을 적용하는 연구사례가 늘고 있다. 본 연구는 기상청에서 제공하는 1시간 단위 강우자료를 바탕으로 각 호우사상별 30분 최대 강우강도를 추정하여 보다 정확한 연강우침식인자를 산출하기 위한 것으로서 강우의 스케일 성질을 이용하였다. 속초 지점의 2007년 강우자료를 바탕으로 각 호우사상의 1시간 최대 강우량을 하향스케일링 하여 30분 최대 강우강도를 산출하여 강우침식인자를 산정한 결과, 기존의 $EI_{30}$$EI_{60}$의 상관관계식 및 연강수량을 이용한 추정방법보다 더 합리적임을 알 수 있었다.

  • PDF

Heavy Rainfall Frequency and Synoptic Climate Analysis according to another Threshold (절점기준에 따른 호우사상의 강우빈도 및 종관기후학적 분석)

  • Kim, Tae-Jeong;Kim, Jin-Young;Ryou, Nim-Suk;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.8-8
    • /
    • 2016
  • 최근 기상상태의 불안정으로 인하여 위험기상이 빈번히 발생하고 있다. 우리나라는 지리적으로 단시간에 매우 높은 강우강도를 유발하는 강우사상이 빈번하게 발생하여 홍수사상이 유발되기 쉽다. 기후변동으로 인하여 지난 30년 동안 극한강우의 발생 빈도는 점차 증가하고 있다. 따라서 본 연구에서는 과거부터 현재까지의 강우패턴을 입력 자료로 사용하여 극단적으로 변화하는 강우사상에 대하여 면밀한 분석을 수행하였다. 본 연구에서는 극치강우사상을 분석하는데 있어 서로 다른 절점기준을 사용하였다. 첫째, 6시간 누적 강우량이 70mm를 초과하는 경우이며 두 번째는 1시간 누적 강우량이 30mm를 초과하는 경우로 구분하였다. 강우빈도 해석을 수행함에 있어 확률분포형의 매개변수의 불확실성을 보다 정량적으로 산정할 수 있는 Bayesian 기법을 적용하였으며, 또한 각각의 절점기준에 따라서 분류된 강우사상 발생시 종관기후학적 분석을 수행하였다. 이를 위해 미국 대기해양청 재해석자료를 활용하였다. 연구결과 산악지역의 극치강우 발생 증가를 확인하였으며, 동중국해 지역의 저기압 특성과 북태평양 고기압 특성이 우리나라 극치강우현상에 주로 영향을 미치는 것을 확인하였다.

  • PDF

Landslide Triggering Rainfall Threshold Based on Landslide Type (사면파괴 유형별 강우 한계선 설정)

  • Lee, Ji-Sung;Kim, Yun-Tae;Song, Young-Karb;Jang, Dae-Heung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.12
    • /
    • pp.5-14
    • /
    • 2014
  • Most of slope failures have taken place between June and September in Korea, which cause a considerable damage to society. Rainfall intensity and duration are very significant triggering factors for landslide. In this paper, landslide-triggering rainfall threshold consisting of rainfall intensity-duration (I-D) was proposed. For this study, total 255 landslides were collected in landslide inventory during 1999 to 2012 from NDMI (National Disaster Management Institute), various reports, newspapers and field survey. And most of the required rainfall data were collected from KMA (Korea Meteorological Administration). The collected landslides were classified into three categories: debris flow, shallow landslide and unconfirmed. A rainfall threshold was proposed based on landslide type using statistical method such as quantile-regression method. Its validation was carried out based on 2013 landslide database. The proposed rainfall threshold was also compared with previous rainfall thresholds. The proposed landslide-triggering rainfall thresholds could be used in landslide early warning system in Korea.

Relationship between Rainfall Intensity and Shear Strength of Slope (사면의 전단강도와 강우강도와의 상관관계)

  • Lee, Jungsik;Han, Heuisoo;Jang, Jinuk;Yang, Namyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.13-21
    • /
    • 2010
  • The unsaturated slope usually is stable for a long time, but fails during heavy rainfall. And the factors of the rainfall intensity exhibit significant roles because the water content and the shear stress developed along the potential failure surface will be changed by the rainfall intensity. The objective of the study presented in this paper is to analyze the relationship between rainfall intensity and shear stress of the soil slopes by applying the laboratory slope model apparatus and undrained direct shear test with rainfall intensity controlled. The soil sample was taken from the field slope of Youngdong, and particle size analysis was done. To look over the relationship between rainfall intensity and shear strength of slope, the three-dimensional relationships among shear strength, normal stress and water content of the slope soil samples are examined; those are based on the data from the TDR sensor and undrained direct shear test.

Analysis of Slope Hazard-Triggering Rainfall Characteristics in Gangwon Province by Database Construction (DB구축을 통한 강원지역 사면재해 유발강우특성 분석)

  • Yune, Chan-Young;Jun, Kyoung-Jea;Kim, Kyung-Suk;Kim, Gi-Hong;Lee, Seung-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.10
    • /
    • pp.27-38
    • /
    • 2010
  • In every summer season, most of the slope failures and debris flows occurr due to seasonal rain, typhoon, and localized extreme rainfall in Gangwon Province where 83% of the area is of mountain region. To investigate the slope-hazard triggering rainfall characteristics in Gangwon Province, slope hazard data, precipitation records, and forest fire data were collected and the DATABASE was constructed. Analysis results based on the DATABASE showed that many slope hazards occurred when there was little rainfall and the preceding rainfall had more effect on the slope hazard than the rainfall intensity at the day of hazard. It also showed that the burned area by forest fire was highly susceptible to slope hazard with low rainfall intensity, and the slope hazard in burned area showed highest frequency, especially, under the rainfall below 2-year return period.

Relationships on Magnitude and Frequency of Freshwater Discharge and Rainfall in the Altered Yeongsan Estuary (영산강 하구의 방류와 강우의 규모 및 빈도 상관성 분석)

  • Rhew, Ho-Sang;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.223-237
    • /
    • 2011
  • The intermittent freshwater discharge has an critical influence upon the biophysical environments and the ecosystems of the Yeongsan Estuary where the estuary dam altered the continuous mixing of saltwater and freshwater. Though freshwater discharge is controlled by human, the extreme events are mainly driven by the heavy rainfall in the river basin, and provide various impacts, depending on its magnitude and frequency. This research aims to evaluate the magnitude and frequency of extreme freshwater discharges, and to establish the magnitude-frequency relationships between basin-wide rainfall and freshwater inflow. Daily discharge and daily basin-averaged rainfall from Jan 1, 1997 to Aug 31, 2010 were used to determine the relations between discharge and rainfall. Consecutive daily discharges were grouped into independent events using well-defined event-separation algorithm. Partial duration series were extracted to obtain the proper probability distribution function for extreme discharges and corresponding rainfall events. Extreme discharge events over the threshold 133,656,000 $m^3$ count up to 46 for 13.7y years, following the Weibull distribution with k=1.4. The 3-day accumulated rain-falls which occurred one day before peak discharges (1day-before-3day -sum rainfall), are determined as a control variable for discharge, because their magnitude is best correlated with that of the extreme discharge events. The minimum value of the corresponding 1day-before-3day-sum rainfall, 50.98mm is initially set to a threshold for the selection of discharge-inducing rainfall cases. The number of 1day-before-3day-sum rainfall groups after selection, however, exceeds that of the extreme discharge events. The canonical discriminant analysis indicates that water level over target level (-1.35 m EL.) can be useful to divide the 1day-before-3day-sum rainfall groups into discharge-induced and non-discharge ones. It also shows that the newly-set threshold, 104mm, can just separate these two cases without errors. The magnitude-frequency relationships between rainfall and discharge are established with the newly-selected lday-before-3day-sum rainfalls: $D=1.111{\times}10^8+1.677{\times}10^6{\overline{r_{3day}}$, (${\overline{r_{3day}}{\geqq}104$, $R^2=0.459$), $T_d=1.326T^{0.683}_{r3}$, $T_d=0.117{\exp}[0.0155{\overline{r_{3day}}]$, where D is the quantity of discharge, ${\overline{r_{3day}}$ the 1day-before-3day-sum rainfall, $T_{r3}$ and $T_d$, are respectively return periods of 1day-before-3day-sum rainfall and freshwater discharge. These relations provide the framework to evaluate the effect of freshwater discharge on estuarine flow structure, water quality, responses of ecosystems from the perspective of magnitude and frequency.