• Title/Summary/Keyword: 유리 절삭

Search Result 43, Processing Time 0.026 seconds

Real-Time Variable-Feedrate NURBS Surface Interpolator (실시간 가변속 NURBS 곡면 인터폴레이터)

  • 구태훈;지성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.371-374
    • /
    • 1997
  • This study presents a new type of real-t~me CNC interpolator that is capable of generating cutter paths for ball-end milling of NURBS surfaces. The proposed surface interpolator comprises real-time algorithms for cutter-contact (CC) path scheduling and CC path interpolation. Especially, in this study, a new interpolator module to regulate cutting forces is developed. This proposed algorithm utilizes variable-feedrate commands according to the curvature of machined surfaces. The proposed interpolator is evaluated and compared with the conventional method based on constant feedrates through computer simulation.

  • PDF

The Cutting Characteristics of the GFRP by Processing methods (가공방법에 따른 GFRP의 절삭특성)

  • 박종남;정성택;이승철;조규재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1764-1767
    • /
    • 2003
  • It is widely used in composite materials like several mechanical parts. aerospace industries. internal and structural materials of cars, building structures. ship materials and sporting goods. but it is insufficient to apply in field of mechanical processing. Therefore. GFRP which is possible to use in industrial field was examined about cutting force. tool wear condition of cutting, chip shape. surface roughness and inlet or outlet shape of processing parts with changing cutting condition and using HSS drill which is in vertical machining center in this paper.

  • PDF

A Study on the Cutting Characteristics of Glass Fiber Reinforced Plastics by Tool Materials and Type (유리섬유강화 플라스틱의 공구재질 및 형상에 따른 절삭특성에 관한 연구)

  • An, Sang-Ook;Noh, Sang-Lai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1216-1224
    • /
    • 1996
  • In the use of glass fiber reinforced plastics it is often necessary to cutting the components, but the cutting GFRP is often made difficult by the delamination of composites and the short tool life. In this paper, the machinability of GFRP by mean of tool materials and type was experimentally investigated. By proper selection of cutting tool material and type excellent machining of this workpiece is achieved. The surface quality relate closely with the feed rate and cutting tools.

An Experimental Study of Ultra-Precision Turning of Optical Glass(BK7) (광학유리(BK7) 초정밀절삭의 실험적 연구)

  • Kim, Min-Jae;Lee, June-Key;Yun, Yeong-Gon;Lee, Hyeon-Sung;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.382-385
    • /
    • 2011
  • There is an immense need to obtain nanometric surface finish on optical glass owing to the advantage of improved performance of the components. But owing to brittleness and hardness, optical glass is one of the materials that is difficult to ultra-precision turning. According to the hypothesis of ductile mode machining, regardless of their hardness and brittleness, will undergo a transition from brittle to ductile machining region below a critical undeformed chip thickness. Below this threshold, it is suggested that the energy required for plastic formation. Thus, plastic deformation is the predominant mechanism of material removal in machining these materials in this mode. An experimental study is conducted diamond cutting for machining BK7 glass. The investigation presents the feasibility of achieving nanometric surface and the understanding the mechanism of cutting glass, proving the cutting edge radius effect.

Transmembrane Pressure of Flat-sheet Membrane in Emulsion Type Cutting Oil Solution for Symmetric/Asymmetric Sinusoidal Flux Continuous Operation Mode (대칭/비대칭 사인파형 연속운전 방식에 따른 에멀젼형 절삭유 수용액 내 평막의 막간 차압)

  • Won, In Hye;Lee, Hyeon Woo;Gwak, Hyeong Jun;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.320-326
    • /
    • 2015
  • In this study, permeation experiments were carried out using the symmetric and asymmetric sinusoidal flux continuous operation (SFCO) modes for the submerged flat sheet membrane in the 0.5 wt% emulsion type cutting oil solution. The effective area and nominal pore size of the used microfiltration membrane were $0.02m^2$ and $0.15{\mu}m$, respectively. The emulsion cutting oil was rejected over 99% based on turbidity. Transmembrane pressure increased lower as the aeration rates increased. The symmetric SFCO mode was a little more effective than the symmetric SFCO mode in low permeate flux between 10 and $15L/m^2{\cdot}h$. However, the symmetric SFCO mode was shown very effectively in high permeate flux between 25 and $30L/m^2{\cdot}h$.

Comparison of Machining Defects by Cutting Condition in Hybird FRP Drilling (유리탄소섬유 하이브리드 복합재의 절삭 조건에 따른 가공 결함 비교)

  • Baek, Jong-Hyun;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.12-20
    • /
    • 2022
  • Delamination and burr defects are important problems in drilling fiber reinforced plastics. A method for measuring FRP drilling defects has been studied. Delamination and burr factors were defined as the relative length or area. Using these factors, the effects of tool shape and drilling conditions on delamination and burr were studied. In this study, the defects that occur when drilling a glass-carbon fiber hybrid composite were compared in terms of three factors. In the glass-carbon fiber hybrid composite, the effects of the feed rate and tool point angle on the delamination and burr factors were similar to those in previous studies. The diameter of the tool did not affect the defect factor. A circular burr was generated in a drill tool with a point angle of 184°, and a relatively small deburring factor was observed compared with a tool with a point angle of 140°.

Tensile bond strength of chairside reline resin to denture bases fabricated by subtractive and additive manufacturing (적층가공과 절삭가공으로 제작한 의치상과 직접 첨상용 레진 간의 인장결합강도 비교)

  • Kim, Hyo-Seong;Jung, Ji-Hye;Bae, Ji-Myung;Kim, Jeong-Mi;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.177-184
    • /
    • 2020
  • Purpose: The purpose of this study was to compare and evaluate the tensile bond strength of chairside reline resin to denture base resin fabricated by different methods (subtractive manufacturing, additive manufacturing, and conventional heat-curing). Materials and methods: Denture base specimens were fabricated as cuboid specimens with a width of 25 mm × length 25 mm × height 3 mm by subtractive manufacturing (VITA VIONIC BASE), additive manufacturing (NextDent Base) and conventional heat-curing (Lucitone 199). After storing the specimens in distilled water at 37℃ for 30 days and drying them, they were relined with polyethyl methacrylate (PEMA) chairside reline resin (REBASE II Normal). The subtractive and additive manufacturing groups were set as the experimental group, and the heat-curing group was set as the control group. Ten specimens were prepared for each group. After storing all bound specimens in distilled water at 37℃ for 24 hours, the tensile bond strength between denture bases and chairside reline resin was measured by a universal testing machine at a crosshead speed of 10 mm/min. The fracture pattern of each specimen was analyzed and classified into adhesive failure, cohesive failure, and mixed failure. Tensile bond strength, according to the fabrication method, was analyzed by 1-way ANOVA and Bonferroni's method (α=.05). Results: Mean tensile bond strength of the heat-curing group (2.45 ± 0.39 MPa) and subtractive manufacturing group (2.33 ± 0.39 MPa) had no significant difference (P>.999). The additive manufacturing group showed significantly lower tensile bond strength (1.23 ± 0.36 MPa) compared to the other groups (P<.001). Most specimens of heat-curing and subtractive manufacturing groups had mixed failure, but mixed failure and adhesive failure showed the same frequency in additive manufacturing group. Conclusion: The mean tensile bond strength of the subtractive manufacturing group was not significantly different from the heat-curing group. The additive manufacturing group showed significantly lower mean tensile bond strength than the other two groups.

Intelligent NURBS Surface Interpolator with Online Tool-Path Planning (온라인 방식의 지능형 NURBS 곡면 보간기)

  • 구태훈;지성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.471-474
    • /
    • 2004
  • In this paper, a NURBS surface interpolator is proposed which can deal with shapes defined from CAD/CAM programs on a surface basis and can improve contour accuracy. The proposed interpolator is based on newly defined G-codes and includes online tool-path planning suitable for NURBS surface machining. The real-time interpolation algorithm, considering an effective machining method for each machining process and minimum machining time, is executed in an online manner. The proposed interpolator is implemented on a PC-based 3-axis CNC milling system and evaluated through actual machining in terms of machining time and regulation of feedrate and cutting force in comparison with the existing method.

  • PDF

Characteristics of tool wear in cutting glass fiber reinforced plastics : the effect of physical properties of tool materials (유리섬유 강화 플라스틱(GERP) 절삭시의 공구마멸 특성)

  • 이원평;강명순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 1988
  • A turning (facing) test on Glass Fiber Reinforced Plastics was performed with several tool materials, e.g., cemented carbides, cermet and ceramic, and the wear patterns and wear rate were analyzed to clarify the relation between physical(mechanical) properties and flank wear of cutting tool. The main results are obtained as follows: (1) When cutting speed is increased, the flank wear in every tool material grows the abnormal wear in the shape of triangle at a certain speed, i.e., a critical speed. (2) When cutting speed is increased, the wear rate in experimental tool material starts to increase remarkably at a critical speed. (3) The thermal conductivity among the properties of the tool material and the thermal crack coefficient of it are almost in proportion to the critical speed. (4) The order of performance in tool materials for cutting GFRP is K 10, M10, P20, TiC, CB.

  • PDF

On cutting characteristics of glass fiber reinforced plastic (유리섬유강화수지의 절삭특성)

  • Choi, Soo-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.1
    • /
    • pp.78-83
    • /
    • 1988
  • The purpose of this study is to understand the cutting characteristics of glass-fiber rein- forced plastic (GFRP) by investigating the variation of cutting force and surface roughness, depending on the amount fo flank wear and cutting conditions. And a Taylor type tool life equation is derived using the regression analysis. The present study reveals that, 1. Taylor's eqquation can be applicable to GFRP nd the constants n (0.170-0.175) and C (53.7- 64.4) are smaller than those in cutting of steel. 2. Principal cutting force increases sharply with the increase of feed rate, but feed force and radial force are almost constant. This result is quite different from that of metal cutting. 3. Cutting forces ($F_P, \;F_Q, \;F_R$) increase with the increase of flank wear, and feed force especially increases sharply with the increase of flank wear. 4. Surface roughness changes very much along the circumference of the workpiece and the amount of flank wear has almost no effect on surface roughness.

  • PDF