• Title/Summary/Keyword: 유리섬유강화 복합재

Search Result 69, Processing Time 0.028 seconds

Electromagnetic-wave Shielding by Nano Particles-contained Glass Fiber Reinforced Composite Materials (나노입자 첨가 유리섬유강화 복합재료의 전자기파 차폐특성)

  • 정우균;안성훈;원명식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1331-1334
    • /
    • 2004
  • The research on electromagnetic shielding has been advanced for military applications as well as for commercial products. Utilizing the reflective properties and absorptive properties of shielding material, the replied signal measured at the rear surface or at the signal source can be minimized. The shielding effect was obtained from materials having special absorptive properties or from structural characteristics such as stacking sequence. Recently researchers studied the electromagnetic properties of nano size particles. In this research {glass fiber}/{epoxy}/{nano particle} composites(GFR-Nano composites), was fabricated using various nano particles, and their properties in electromagnetic shielding were compared. For the visual observation of the nano composite materials, SEM(Scanning Electron Microscope) and TEM(Transmission Electron Microscope) were used. For the measurement of electromagnetic shielding, HP8719ES S-parameter Vector Network Analyser System was used on the frequency range of 8 GHz~12GHz. Among the nano particles, carbon black and Multi-Walled Carbon Nano-Tube (MWCNT) revealed outstanding electromagnetic shielding. Although silver nano particles (flake and powder) were expected to have effective electromagnetic shielding due to their excellent electric conductivities, test showed little shielding effect.

  • PDF

Structural Changes of Nylon 6/Clay Nanocomposite Film on Drawing Condition (Nylon 6/Clay 나노복합재 필름의 연신조건에 따른 구조적 변화)

  • 강영아;김경효;이양헌;조현혹
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.352-353
    • /
    • 2003
  • Clay 분산 유/무기 나노복합재 제조기술은 실리케이트 층상구조의 점토광물을 나노 스케일의 시트상의 기본 단위로 박리(exfoliation)하여 고분자수지에 분산시킴으로써 범용 고분자의 낮은 기계적 물성의 한계를 엔지니어링 플라스틱 수준으로까지 올리고자 하는 것으로서, 기존의 무기 충진재 및 강화재의 입자크기(〉1 $\mu\textrm{m}$)를 나노 스케일까지 분산시켜 기존 무기물 충진 복합재의 단점을 한층 보완하는 것을 목표로 하고 있어 성능 및 원가 면에서 매우 유리한 방법으로 21세기의 복합재료 생산시장의 판도에 상당한 변화를 가져오게 할 수 있는 핵심기술이라 할 수 있다. (중략)

  • PDF

Design and Properties of Microwave Absorbing Structures Composed of Fiber Reinforced Composites (섬유강화 복합재료로 구성된 전파흡수구조재의 설계 및 특성)

  • 김상영;김성수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.1002-1008
    • /
    • 2001
  • The absorbing structure composed of multi-layered fiber reinforced composite materials was designed and microwave absorbing properties are investigated. On the basis of transmission line theory, the theoretical equations to predict the reflection loss and the appropriate composite material for each functional layer are suggested. The most significant result of this study is the successful design and fabrication of triple-layered composite laminates which has the superior microwave absorbing porperties (more than 10 dB in 4∼12 GHz range), without using the ferrite filler in the impedance transforming layer. In the two-layered composite laminate (absorber/substrate), however, the use of ferrite filler (about 40 wt %) in the absorbing layer is necessary to obtain the certain level of microwave absorbance. By combining the glass-fiber composite with ferrite filler and carbon-fiber composite substrate, the microwave absorbing properties more than 10 dB in 4∼12 GHz frequencies than be obtained.

  • PDF

Research on Evaluation of Properties of PA6/PA66/GF Composite according to Injection Pressure and Simulation of Damping Performance (엔진마운트 브라켓용 PA66/GF 복합재료의 특성 평가 및 진동감쇠 성능 시뮬레이션에 대한 연구)

  • Seong-Hun Yu;Hyun-Sung Yun;Dong-Hyun Yeo;Jun-Hee Lee;Jong-Su Park;Jee-hyun Sim
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.59-67
    • /
    • 2024
  • Research was conducted on a PA material-based composite material manufacturing method for application to engine mount brackets. Engine mount brackets must have heat resistance, impact resistance, and damping performance. PA66 resin was used as the base material for the composite material. The glass fiber was used as the reinforcement material. The composite material was manufactured using the injection molding method. The thermal, mechanical, and morphological characteristics were analyzed depending on the content of glass fiber. 3D model was created using the property evaluation database of composite materials(input data). The damping performance of the generated 3D model was extracted as out-put data. The reason for evaluating the characteristics of PA-based composite materials and conducting simulations on the damping performance of 3D models of engine brackets is because product performance can be predicted without manufacturing actual automobile parts and conducting damping performance tests. As a result of the damping simulation, damping performance tended to increase proportionally as the mass fraction of the reinforcement increased. But above a certain level, it no longer increased and slightly decreased. As a result of comparing the actual experimental values a nd the simulated values, the approximate value was within ±5%.

A study on the properties of the carbon long-fiber-reinforced thermoplastic composite material using LFT-D method (LFT-D공법을 이용한 탄소 장섬유 강화 열가소성 복합재의 특성에 관한 연구)

  • Park, Myung-Kyu;Park, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.80-85
    • /
    • 2016
  • Carbon fiber-reinforced composite materials have been widely used in various industrial fields, but there are limits to increasing their strength and stiffness, because of the short-length fibers that are impregnated in them. In this study, a lab-scale small extruder system was developed with the capability to perform the carbon fiber impregnation and extrusion process in order to evaluate the properties of long-length carbon fiber reinforced thermoplastic composite materials molded by the LFT-D method. Specimens were made with the small extruder to press-mold long-length carbon fiber composite materials and evaluate their material properties. As a result, it was found that the carbon fiber length, press load and carbon fiber contents have a considerable influence on the strength and stiffness. Additional studies on such factors as the mixing screw design and coating of the carbon fiber are needed in order to improve the mechanical properties of carbon fiber composite materials.

Study on mechanical behavioral characteristics of the curved FRP-concrete composite member for utilization as a tunnel lining structure (터널 라이닝 구조체로서 활용을 위한 곡면 FRP-콘크리트 복합부재의 역학적 거동특성 분석 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung;Kim, Seung-Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.2
    • /
    • pp.149-158
    • /
    • 2011
  • Utilization of the fiber reinforced polymer (FRP) material has been increased as an alternative in a bid to supplement the problems with general construction materials such as long-term problems corrosion, etc. However, there are still many problems in using a linear-shaped FRP material for a tunnel lining structure which has arch-shape in general. In this study, the loading tests for the FRP-concrete composite member was carried out to evaluate their applicability as a tunnel reinforcement material, which are based on the results from preliminary numerical studies for identifying the behavioral characteristics of FRP-concrete composite member. Moreover, numerical analysis under the same condition as applied in the loading tests was again conducted for analysis of mechanical behavior of the composite member. As a result of the load test and numerical analysis, it appears that the FRP-concrete composite member is greatly subject to shear movement caused by bending tension acting on the interface between two constituent members.

A Safety Evaluation on the Ring Deflection of Buried GRP Pipes (지중매설 유리섬유복합관의 관변형에 관한 안전성 평가)

  • Park, Joon-Seok;Kim, Sun-Hee;Kim, Eung-Ho;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.26-33
    • /
    • 2011
  • Recently, the use of buried glass fiber reinforced plastic (GRP) pipes is widespread and ever increasing trend in the industry. GRP pipes are attractive for use in harsh environments, such as for the collection and transmission of liquids which are abrasive and/or corrosive. The structural behavior of a GRP pipes buried under the ground is different from that of a rigid one made of concrete or clay, for example. A GRP pipe buried under the ground is deflected circumferentially by several percent and the stresses in the pipe are mainly compressive stresses. A GRP pipes has been introduced by a number of manufacturers for selection and used by underground pipeline designers. In all cases, the modified Spangler's equation is recommended by these manufacturers for predicting the ring deflection of these pipes under dead and live loads. In this paper, the ring deflection of buried GRP pipe is evaluated and discussed based on the result of analytical investigation.

Effect of Glass Fiber and Graphite on Wear Properties in Tin-Bronze Matrix Composites (유리섬유 강화 청동기지 복합재에서 마모특성에 미치는 유리섬유와 흑연의 영향)

  • 황순홍;김종국;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.181-187
    • /
    • 1995
  • The effet of glass fiber and graphite on the wear properies in tin-bronze alloy matrix composites was studied by a pin-on-disk type wear testing machine. The results obtained from the wear test were analized by SEM observations of worn surfaces of pins and disks and EPMA composition measurments. The amount of wear was devreased as increasing the content of glass fiber in matrix, since the alloy matrix was reinforced by glass fibers. The wear mechanism of the matrix specimen without glass fibers was proved as the contact area delamination. Oxide layer formed on sliding surface led to the increasing wear resistance. Specimens containing graphite particles showed an lubrication effect to counter disks.

  • PDF

추진기관에 사용되는 내열 복합재료

  • Jeong, Bal
    • Defense and Technology
    • /
    • no.9 s.163
    • /
    • pp.46-50
    • /
    • 1992
  • 고온, 고압의 추진제 연소가스로부터 노즐 구조물을 보호하기 위해 사용되는 열 차폐용 삭마성 내열재료(ablative material)의 종류와 재료선정을 위한 시험방법, 설계 및 제작기법, 성능평가 기준 등에 관한 연구동향을 검토하고 본 연구팀의 연구결과를 제시하였습니다 고체추진제 연소 환경하에서의 노즐 보호재료로서는 고분자계 삭마성 내열재가 주로 사용되는데, 이 ablative material에는 여러 종류가 있으나 높은 heat flux와 빠른 mass flow에 대한 내열을 위해서는 페놀, 폴리이미드 등 열경화성 수지인 charring material이 모재로 주로 사용되며 강도향상을 위해서 탄소, 실리카, 석면, 유리등의 강화섬유가 보강재로 사용됩니다 현재는 모재로서 고분자계 수지외에도 세라믹과 같은 무기재료, 금속재료등과 강화섬유를 조합하여 내열성과 강도가 향상된 재료를 개발하는 연구도 진행되고 있습니다

  • PDF