• Title/Summary/Keyword: 유로형상

Search Result 185, Processing Time 0.025 seconds

Numerical Study on Performance of PEMFC with Block and Sub-channel of Cathode Flow Field (캐소드 유로에서 블록과 서브 채널의 고분자전해질 연료전지의 성능에 관한 전산해석 연구)

  • Jo, Seonghun;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.613-620
    • /
    • 2021
  • A flow channel shape of PEMFC has an influence on the internal flow uniformity. If the reactant distribution in a flow path is not uniform during operation, both catalyst deactivation and mechanical damage of membrane could occur resulting in decreasing the membrane electrode assembly (MEA) durability. Numerous studies concerning flow design have been conducted to make smooth supply and uniform distribution of reactants in fuel cells. The baffle of flow path could improve fuel cell performance through the forced convection effect. A sub-channel, as an additional air flow path, could increase the reactant concentration and reduce the mass transfer loss via a smooth water discharge. In this study, computational fluid dynamics (CFD) was used to analyze the effect of blocks and sub-channels on the current density and oxygen concentration of the fuel cell. As a result, the limit current density and oxygen concentration at a rear block increased when using blocks and sub-channels in a flow channel. In particular, the current density increased significantly when the sub-channel was placed between two blocks. Also, the sub-channel position was optimized by analyzing the oxygen concentration, and the oxygen concentration was recovered at a rear block in the fuel cell.

Streaming Electrification of Pressbord by Oil Path Form (유로형상에 의한 절연지의 유동대전 특성)

  • 이동훈;최창락;박재윤;이충식;고희석;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.332-335
    • /
    • 1995
  • Electrification pipe modeled on the oil path of the high power transformer is designed and manufactured. Distributions of oil flow velocity are simulated as spacer form in the electrification pipe. Streaming currents are investigated as each electrification pipe. The surface oil velocity of spacer is small the streaming current.

  • PDF

Bingham Charateristics of Electrorheological Fluid and Its Application to ER valve and ER Damper (전기유변유체의 빙햄특성과 밸브 및 댐퍼에의 응용)

  • 배종인
    • The Korean Journal of Rheology
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 1998
  • 전기장이 인가되고 있는 유로를 유동하는 전기유변유체의 기본성질을 파악하기 위 한 실험 및 해석적 연구를 수행하여 빙햄유체로서의 유효성에 대해 알아보고 전기장과 유로 면 형상 및 진동유동으로 인한 영향에 대해 조사함으로써 ER밸브 및 ER대퍼로의 응용과 관련한 감쇄력 제어에 대해 검토하였다. 첫 번째 실험은 ER밸브의 높이가 2mm인 적극면이 평탄한것과 요철로 된 것을 사용하여 압력손실을 압력변환기로 측정함으로써 전기장 및 유 로형상에 대한 영향을 알아보았다. 압력손실 및 전단응력이 전기자세기와 함수관계를 가짐 을 알수 있었고 전기장세기와 유속의 변화시 손실계수에 의한 ER효과의 상이함이 확인되었 으며 레이놀즈수가 커지면 항복전단응력의 영향은 나타나지 않았다. 두 번째 실험은 실린더 를 정현파로 진동시켜 ER밸브에서 감쇠력제어가 가능한가를 알아보고 빙햄유체모델로 설계 된 ER댐퍼의 모델과 비교하였다. ER배르와 ER댐퍼의 수학적 모델을 시뮬레이션한 결과는 약간 벗어남이 보이기는 하나 실험결과와 일치하요 있다. 이것은 ER유체를 단순히 빙행유 체로 취급할수없으나 거시적으로는 빙햄유체로 취급할수 있음을 시사한다.

  • PDF

Optimal inlet shape design of air handling unit using CFD (유동해석을 사용한 공조기 입구형상의 최적설계)

  • 최영석;이용갑;주종일
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.108-112
    • /
    • 2001
  • 본 논문에서는 전산유체해석 기법을 이용하여 저소음ㆍ고효율 공조기의 입구형상에 대한 유동해석을 하였다. 공조기 입구형상을 결정하는 여러 설계변수가 입구와 출구의 유동조건과 유로의 압력손실에 미치는 영향을 평가하였다. 이를 바탕으로 입구와 출구유동의 균일성과 압력손실의 최소화를 만족하는 최적의 설계 변수를 결정하여 공조기의 최적설계를 달성하였다.

Improvement of the Aerothermal Environment for a 90° Turning Duct by an Endwall Boundary Layer Fence (90° 곡관에서의 경계층 판을 이용한 열유동 환경 개선)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.25-35
    • /
    • 2012
  • An endwall boundary layer fence technique was adapted to improve the aerothermal environment of a gas turbine passage. The shape optimization of the fence was performed to maximize the improvement. The turbine passage was simulated by a $90^{\circ}$ turning duct (ReD=360,000). The main purpose of the present investigation was to focus on finding a endwall boundary layer fence with minimum total pressure loss in the passage and heat transfer coefficient on the endwall of the duct. Anothor objective function was to minimize the area on the endwall of the duct. An approximate optimization method was used for the investigation to secure the computational efficiency. Results indicated that a significant improvement in aerodynamic environment can be achieved through the application of the fence. Improvement of the thermal environment was smaller than that of the aerodynamic enviroment.

A Numerical Study on Improving the Thermal Hydraulic Performance of Printed Circuit Heat Exchanger Using the Supercritical Carbon Dioxide (초임계 이산화탄소를 작동유체로 한 PCHE의 열수력 성능 향상을 위한 수치해석적 연구)

  • Park, Bo Guen;Kim, Dae Hyun;Chung, Jin Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.779-786
    • /
    • 2015
  • The objective of this study is to propose a new channel shape that improves thermal-hydraulic performance. The existing Zigzag channel has high pressure loss due to flow separation and reverse flow. To improve this disadvantage, partial straight channel is inserted into bended points. Also, the effects of straight channel's length change on heat transfer and pressure loss are analyzed. Thermal-hydraulic performance of the new shape and existing Zigzag channel are quantitatively compared in terms of Goodness Factor. Mass flow rate was changed from $1.41{\times}10^{-4}$ to $2.48{\times}10^{-4}kg/s$. The average volume goodness factor of 1mm straight channel shape was increased by 25% compared to the Zigzag channel.

Improvement of the flow characteristics for a $90^{\circ}$ turning duct by the nonaxisymmetric endwall and endwall boundary layer fence ($90^{\circ}$ 곡관에서의 비축대칭 끝벽과 끝벽 경계층 판을 이용한 유동특성 향상)

  • Cho, Jong-Jae;Kim, Sang-Jo;Seo, Jong-Chul;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.406-413
    • /
    • 2011
  • This paper presents the shape optimization of a nonaxisymmetric endwall and endwall boundary layer fence which improve the aerothermal environment of a gas turbine passage. The endwall and fence methods were used simultaneously. The turbine passage was simulated by a $90^{\circ}$ turning duct ($Re_D$=360,000). The main purpose of the present investigation was to focus on finding a nonaxisymmetric endwall and boundary layer fence with minimum total pressure loss in the passage and heat transfer coefficient on the endwall of the duct. An approximate optimization method was used for the investigation to secure the computational efficiency. Results indicated that a significant improvement in aerothermal environment can be achieved through the application of a nonaxisymmetric endwall and boundary layer fence.

  • PDF

Metal Foam Flow Field Effect on PEMFC Performance (금속 폼 유로가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.442-448
    • /
    • 2021
  • Flow field is an important parameter for polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on the reactant supply, heat and water diffusion, and contact resistance. In this study, PEMFC performance was investigated using Cu foam flow field at the cathode of 25 cm2 unit cell. Polarization curve and electrochemical impedance spectroscopy were performed at different pressure and relative humidity conditions. The Cu foam showed lower cell performance than that of serpentine type due to its high ohmic resistance, but lower activation and concentration loss due to the even reactant distribution of porous structure. Cu foam has the advantage of effective water transport because of its hydrophobicity. However, it showed low membrane hydration at low humidity condition. The metal foam flow field could improve fuel cell performance with a uniform pressure distribution and effective water management, so future research on the properties of metal foam should be conducted to reduce electrical resistance of bipolar plate.

Morphometrical characteristics of River Meandering (하천 사행의 계량형태학적 특성)

  • 이재우;이원환
    • Water for future
    • /
    • v.14 no.1
    • /
    • pp.39-49
    • /
    • 1981
  • The purpose of this study is to examine the meander charactericstics for the rivers in Korea..In this study, the new characteristics factors of meander are proposed, and the relationships among the factors proposed in this study and the existing factors are derived. An attempt is made to find considerable relation among meander characteristics, but width and meander belt did not show any defined trend and considerable scatter of points was observed. Relationships among the meander length, belt and flowrate, etc., which are factors of meander characteristics, are analyzed the 67 rivers above 30km in length. Channel shape factor which is the ratio of the length from the starting point to the end to the channel lenght, tortuosity which is the ratio of the curved channel length against the channel length are suggested for a new characteristics factor of meander. They are well correlated with channel length, Horton's shape facotr and meander gradient, consequently have to be important measures of river meander. The result of the detailed comparison and the analysis of degree of sinuosity, velocity and water surface slop are brought light on the fact show that the curved reach is morestable than the straight one. The ratio of the meander length to the meander belt and its accumulative frequency showed excellent correlationship when plotted on the semi-log paper. The results of regression analysis of meander belt and meander length show linear for the South Han river branches and power curve for the Geum river and the Nakdong river branches.

  • PDF

Performance Characteristics of PEMFC by flow Configurations and Operating Condition (유로형상 및 운전조건에 따른 고분자 전해질 연료전지의 성능 특성)

  • Lee, Pil-Hyong;Cho, Son-Ah;Han, Sang-Seok;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3440-3445
    • /
    • 2007
  • For proton exchange membrane fuel cell, it is very important to design the flow channel on separation plate optimally to maximize the current density at same electrochemical reaction surface and reduce the concentration polarization occurred at high current density. In this paper, three dimensional computation model including anode and cathode domain together was developed to examine effects of flow patterns and operation conditions such as humidity and operating temperature on performance of fuel cell. Results show that voltage at counter flow condition is higher than that at coflow condition in parallel and interdigitated flow pattern. And fuel cell with interdigitated flow pattern which has better mass transport by convection flow through gas diffusion layer has higher performance than with parallel flow pattern but its pressure drop is increased such that the trade off between performance and pressure drop should be considered for selection of flow pattern of fuel cell.

  • PDF