• Title/Summary/Keyword: 유량측정성과

Search Result 193, Processing Time 0.039 seconds

A Measurement and Analysis for the Discharge Calibration of the Skew Bridge (사교에서의 유량측정치보정을 위한 실측 및 분석)

  • Jeon, Byung-Hark;Lee, Jae-Hyug;Kim, Jeong-Nam;Kim, Sung-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.684-684
    • /
    • 2012
  • 하천유량측정은 불가피하게 사교형태의 교량에서 측정을 해야하는 경우가 적지 않다. 이러한 교량에서의 유량측정은 수위-단면적이 과대산정되어 유량 역시 크게 산정되므로 이에 대한 보정을 필요로 한다. 본 연구에서는 왕숙천에 위치한 퇴계원 수위관측소 하류 400m 위치에서의 도섭법을 통한 횡단면 측선각도 변화에 따른 유량차의 비교와 오산천에 위치한 약 $45^{\circ}$ 사교(탑동대교)의 탑동 수위관측소 위치의 교량법을 이용한 유량측정 성과, 한탄강에 위치한 약 $15^{\circ}$ 사교(한탄대교)의 전곡 수위관측소 상류 1km에 위치한 한탄대교에서의 교량법 측정 성과에 따른 유량차를 비교 분석하였다. 한강유역 왕숙천, 오산천, 한탄강에 위치한 퇴계원 지점, 탑동 지점, 전곡 지점에서 실시간 수위에 따른 유속을 측정하였으며, 퇴계원 지점에서는 횡단면에 직각인 측선을 기준 값으로 제시하고, 횡단방향각의 정도를 $10^{\circ}$, $30^{\circ}$, $50^{\circ}$으로 늘려 산정을 하였고, 탑동과 전곡 지점에서는 사교에서의 횡단각을 측정하여 사교의 각을 산정한 후 보정 전 후의 유량 값을 비교 분석하였다. 측정에 사용된 기기는 Price AA 유속계이고, 측정방법은 도섭법과 교량법을 적용하였다. 그 결과 직각인 측선에서 측정한 유량보다 사교형태에서 측정한 유량이 크게 산정되었다. 각 지점의 보정전 후 유량비는 탑동 지점 약 41.42%, 전곡 지점 약 3.53%로 산정되어 $15^{\circ}$ 사교의 전곡 지점에 비해 $45^{\circ}$ 사교의 탑동 지점의 보정전 후 유량차이가 크게 나타남에 따라 각이 클수록 유량 역시 과대하게 산정됨을 알 수 있었다. 따라서 유량측정을 실시할 경우 유량의 흐름방향을 기준으로 직각의 유량측정을 실시하여 유량을 산정하되 부득이한 경우로 사교에서의 측정이 이루어졌을시 흐름 방향을 기준으로 각도를 측정하여 크게 나타나는 수위-단면적에 각보정하여 유량을 산정함이 오차를 줄일 수 있으며, 신뢰성 있는 유량자료 생산의 방법이라 할 수 있겠다.

  • PDF

Application of StreamPro ADCP at Station of Low Depth and Low Velocity (저수심.저유속 지점에 대한 StreamPro ADCP의 적용성 평가)

  • Park, Seok-Geun;Kim, Chi-Young;Lee, Chung-Dae;Lee, Jin-Won;Lee, Geum-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1437-1441
    • /
    • 2009
  • 기존의 ADCP는 1m 이하의 저수심 지점에서 측정이 불가능하였으며, 유속계 측정장비는 저유속 지점에서 측정이 불가능한 경우가 많아 유량측정에 어려움을 겪는 경우가 많다. 최근 RDInstruments에서 제작한 StreamPro는 1m 이하의 수심, 0.1m/s 이하의 유속에서 측정이 가능하기 때문에 이를 이용하면 저수심, 저유속 지점에서 유량측정이 가능하다. ADCP를 이용한 측정의 경우 보다 정확한 측정성과를 얻기 위하여 유속의 50% 속도로 이동하며 측정하여야 하며, 4회 측정유량값의 상대오차가 5% 이내일 때 그 평균값을 측정치로 한다. 그러나 0.1m/s 이하의 유속이 나타나는 지점은 0.05m/s 이하의 속도로 이동하며 측정을 실시하여야 하며 이 경우 측정시간이 너무 길어지는 문제가 있다. 따라서 본 연구에서는 StreamPro를 이용한 유량측정의 적용성 평가와 함께 적절한 신뢰도를 얻을 수 있는 실용적인 측정회수 분석을 실시하였다. StreamPro를 이용한 측정성과의 적용성을 평가하기 위하여 StreamPro와 동시에 Price 유속계 측정을 실시하여 이를 비교하였다. 실용적인 적정 측정회수 분석은 측정유량의 상대오차를 Student-t분포에 적용하여 불확실도값을 기준으로 분석하였다. StreamPro와 Price 유속계 측정성과를 비교한 결과, 평균 상대오차가 약 3.5%로 적절한 값을 나타냈으며, 저수심, 저유속 지점에서의 실용적인 측정회수는 약 11회로 나타났다.

  • PDF

Calculation of mean velocity and Discharge Method using Water Surface Velocity Measurements (표면유속측정을 통한 평균유속과 유량산정 방법)

  • Lim, Hyeok Jin;Seol, Myoung Soo;Jung, Moon Soo;Kim, Sam Eun;Kim, Chi Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.503-503
    • /
    • 2017
  • 대부분의 자연하천에서 유량조사는 하천 횡단면의 유속을 측정하여 수위-유량관계로부터 유량을 산정하고 있다. 유속의 측정은 통상적으로 횡단면을 일정 구간으로 구분하여 회전식, 전자식 유속계, 부자 등과 같은 접촉식 장비를 이용하여 일차원 유속으로부터 구간을 대표하는 평균유속을 기반으로 유량을 산정하고 있다. 그러나 이런 접촉식 장비를 통한 유속 측정은 인력, 장비, 비용 및 돌발 호우사상의 측정자의 안전 등 현장 조건의 한계로 관측자료를 확보하지 못 하는 미측정 영역이 발생한다. 이에 따라 수위와 유량측정성과로 개발된 수위-유량관계곡선식은 미측정 구간인 외삽구간에서 정확도가 낮은 유량자료가 산정될 수 있다. 이에 따라 본 연구에서는 하천 횡단면의 일부 고정된 지점에서 측정된 표면유속을 이용하여 유량규모에 따른 평균유속의 상관관계를 분석하고 수위-유량관계곡선으로 산정된 유량과 비교함으로써 비접촉식 유속 측정방식을 통한 유량산정의 활용성과 적용성을 검토하였다. 이를 통해 표면유속을 활용한 유량산정의 실무적인 방법론을 제시하고 고수위 외삽구간의 유량을 비교 및 검증하였으며 수위 1.23m 이상에서 표면유속(0.62m/s ~ 2.69m/s)과 평균유속의 관계는 구간별로 일정한 선형관계가 나타났으며 각 구간에 대한 상관계수는 $R^2=0.97$ 이상으로 높게 나타났다. 이상의 결과는 비접촉식 표면유속측정으로 홍수기 중고수위 이상에서 접촉식 유속계가 갖는 한계를 보완하여 연속적인 유량생산이 가능하고 개발된 수위-유량관계곡선식의 외삽구간을 검토할 수 있는 참고자료를 획득하여 고수위 유량자료의 신뢰성을 높일 수 있는 것으로 판단된다.

  • PDF

Correction of discharge data_Case of measurement location separated from the gauging station (유량자료의 보정_관측소와 이격된 측정위치 경우)

  • Hwang-Bo, Jong Gu;Baek, Kyung Ho;Yun, Hyun Guk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.319-319
    • /
    • 2021
  • 유량측정은 측정방법에 따라 측정위치가 변동된다. 도섭법은 관측자가 직접 하천을 횡단하며 측정하는 방법이며 수심이 얕은 경우 가능하다. 보트법의 경우 상대적으로 공간적 제약을 덜 받으며 교량법의 경우 이용 가능한 교량이 있어야 한다. 따라서 교량법은 현장여건에 따라 관측소와 멀리 떨어져 있는 경우가 있으며 이 경우 측정된 유량을 이용하여 수위-유량관계곡선식을 개발한다면 그 정확도가 떨어질 수 있다. 미국지질조사국(USGS)에서는 관측소와 측정위치가 멀리 떨어진 경우 측정된 유량을 보정하도록 규정하고 있다. 우리나라의 경우 유량 보정을 실시하지 않는 것으로 파악되었다. 하지만 이는 수위-유량관계곡선식, 특히 외삽부분에서 큰 오류를 유발할 수도 있어 신중할 필요가 있다. 본 연구에서는 수위관측소와 측정위치가 현저하게 먼 경우 유량 보정방법을 살펴보고 실측유량과 보정유량의 차이를 확인하였다. 대상지점인 낙동강 유역의 안동시(운산리) 지점은 홍수측정위치와 수위관측소 위치가 약 1.7km 이격되어 있으며, 2020년 측정성과(부자)를 이용하여 이를 보정하고 그 차이를 확인하였다. 보정결과 실측유량과 보정유량이 최고 5.0%, 평균 3.7% 차이를 보이는 것으로 확인되었다. 안동시(운산리)지점은 2020년 측정 최고수위가 3.35m이며, 이는 평수위에서 약 2.00m 가량 상승한 것으로 최고 홍수위로 보기는 어렵다. 즉 이보다 더 큰 홍수 사상이 발생하여 수위가 더 상승한다면 실측유량과 보정유량의 차이는 더 커질 것으로 예상된다. 또한 수위관측소와 측정위치가 이격된 경우 측정된 성과가 루프(Loop) 형태를 보일 수 있어 보정이 필요한 것으로 판단된다.

  • PDF

Estimation of Mean velocity conversion coefficient for measuring Microwave water surface current meter using Drone (드론을 이용한 전자파표면유속계 측정의 평균유속환산계수 산정)

  • Lee, Tae Hee;Kang, Jong Wan;Lee, Ki Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.16-16
    • /
    • 2021
  • 전자파표면유속계(Microwave Water Surface Current Meter)를 이용한 홍수기 유량측정은 교량과 같은 구조물을 이용하여 안전 및 측정위치의 흐름조건 등의 이유로 측정의 한계가 발생한다. 이런 문제점을 개선하기 위해 전자파표면유속계를 드론(Drone)과 결합하여 하천에서의 유량측정에 이용하였다. 전자파표면유속계는 비접촉식 유속측정 장비로 하천의 표면유속을 측정하고 유량산정을 위해 환산계수 0.85를 적용하여 평균유속을 산정하고 있다. 환산계수 0.85는 하천의 각 횡측선 수심-유속분포를 일반적인 분포로 가정하고 표면유속에 0.85를 곱하여 평균유속을 산정한다(Rantz, 1982). 그러나 하천의 측정위치 및 흐름특성에 따라 유속분포가 변화하기 때문에 국외 많은 연구에서 환산계수의 범위를 0.72에서 1.72까지 제시한 바 있다(Johnson and Cowen, 2017). 따라서 환산계수 0.85의 일률적인 적용은 부정확한 유량산정을 초래할 수 있어 측정위치에 적절한 환산계수 산정이 필요하다. 본 연구에서는 2020년 금강의 지류인 봉황천에 위치한 금산군(황풍교) 관측소에서 드론과 전자파표면유속계를 이용해 측정한 표면유속과 ADCP를 이용하여 동시 측정한 평균유속의 비교를 통해 환산계수를 산정하여 평균유속 산정의 정확도를 높이고자 하였다. 전자파표면유속계로 측정한 6개 성과 중 ADCP와 동시 측정한 4개의 성과를 분석하여 환산계수를 산정하였다. 측정성과별 측선수는 16~17개로 홍수터로 월류하여 비정상흐름이 발생한 측선은 제외하고 측선별 환산계수는 0.66에서 1.09의 범위로 나타났고, 성과별 환산계수의 평균치는 0.90에서 0.93 범위로 산정되었다. 환산계수가 일반적인 수치보다 높게 산정된 것은 측정위치 하류 약 600m에 위치한 콘크리트 고정보의 영향이 홍수 시 흐름의 수위-유속분포에 영향을 미쳐 높게 산정된 것으로 판단된다. 따라서 유량산정에 있어 환산계수는 4개 성과에서 산정된 환산계수의 평균치인 0.92를 적용하여 산정하였다.

  • PDF

Assessment of Uncertainty for Discharge Measurement using Velocity-Area method (유속-면적법으로 측정된 유량에 대한 측정 불확도 평가)

  • Kim, Jongmin;Kim, Dongsu;Kim, Seojun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.104-104
    • /
    • 2016
  • 소규모 하천에서의 평수기 유량 측정은 일반적으로 지점식 초음파 유속계, 프로펠러 유속계 등을 활용해 도섭법으로 측정된 유속 측정성과를 기반하여 유속-면적법으로 산정된다. 유속-면적법으로 측정된 유량 측정 성과는 횡방향 측선의 수, 수심방향 측점의 수, 측정 시간, 수심 등 제반 측정 인자에 의해 영향을 받고 유량 불확도는 각 인자 별 오차에 영향을 받는다. ISO 748 (2007)과 ISO 1088 (2007)은 유속-면적법 적용방법, 현장 측정 가이드라인, 불확도 인자 별 적용 요건에 따른 오차, 최종 유량 불확도 산정 기법을 제시하였다. 따라서, 국내외 유량조사 기관에서는 유속면적법을 적용할 경우, ISO에서 제시된 인자 별 오차 및 유량 불확도 산정 기법을 기반으로 유량 불확도를 산정해왔다. ISO 748과 1088은 다양한 규모의 실제 하천에서 관측된 자료를 기반으로 횡방향 측선 수, 수심방향 측점 수 (2점법, 3점법 등), 측정 시간 등과 관련된 인자 별 오차를 표로 상세하게 제시하였고 실무에서는 별도 추가 검증없이 사용해 왔다. 그러나, ISO에서 유속-면적법 유량 측정 불확도를 평가하기 위해 사용된 측정자료는 유량을 제어하기 힘들고 유속 측정 상황이 유출 조건 별로 상이한 현장 자료를 기반으로 하였고, 상대적으로 정확도가 낮은 프로펠러유속계를 기반으로 1960년대에 관측된 자료들을 주로 활용하여 도출되었다. 따라서, 본 연구에서는 기존 ISO에서 제시한 유속-면적법에 필요한 인자들의 오차를 정밀 실규모 실험을 통해 재산정하여 기존 ISO 748과 1088에서 제시한 인자별 오차의 적정성을 검증하고자 하였다. 이를 위해 흐름을 안정적으로 통제할 수 있는 건설기술연구원 안동 하천실험센터의 완경사수로(A2)에서 정상상태의 폭 7m, 수심 1m, 유속 약 1m/s의 흐름을 유지한 후, 유속 측정 정확도가 우수한 micro-ADV를 활용하여 공간적으로 매우 정밀하게 유속을 측정하고, 수심은 Total Station을 기반으로 흐름 발생 전에 정밀 측정하였다. 오차 분석 결과, ISO 규정에서 제시한 오차와 본 실험의 결과로 도출된 인자들의 오차는 상당한 차이를 보였다. 따라서, 본 연구 결과로 도출된 유속-면적법의 인자 별 오차는 실험이 수행된 소하천 규모의 하천에서 도섭법으로 산정된 유량의 불확도를 평가할 경우에 활용될 것으로 기대된다.

  • PDF

Improvement to the Methods of Discharge Computation for the Automated Real-time Discharge Measurement System (자동유량측정시설의 유량산정방법 개선)

  • Song, Jae-Hyun;Kim, Dae-Young;Jin, Suk-Hwan;Roh, Young-Sin;Kim, Chi-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.472-477
    • /
    • 2010
  • 자동유량측정시설은 연속적인 유량자료를 측정하기 위해 운영되는 실시간-무인화 유량측정 시스템이다. 현재 국내 외에서 유량측정을 위해 설치 및 운영되고 있는 자동유량측정시설은 대부분 초음파유속계를 이용하고 있는는데, 초음파유속계는 유속을 측정하는 방식에 따라 크게 도플러방식 초음파유속계(ADVM, Acoustic Doppler Velocity Meter)와 이동시간차방식 초음파유속계(UVM, Ultrasonic Velocity Meter)로 분류된다. 본 연구에서는 각 방식별로 유량산정방법을 개선하기 위해 설치 운영 중인 자동유량측정시설 중 고령교 지점의 ADVM 방식과 여주, 적성 지점의 UVM 방식을 대상으로 측정성과에 대한 문제점을 분석하고 통계적인 방법을 통해 오측유속을 제거하거나 방식별 또는 지점별 특성을 고려하여 적절한 유량산정방법을 적용하였다. 그 결과 3개 지점에 대한 검증유량과의 평균 상대오차율은 모두 10% 이내로 나타났다.

  • PDF

Runoff Characteristics Analysis in the Han-River Basin (2006년 한강 유역의 유출특성 분석)

  • Lee, Sang-Cheol;Lee, Seok-Ho;Kwon, Dong-Seok;Kim, Dong-Phil;Jung, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1929-1934
    • /
    • 2007
  • 본 연구는 2006년도 한강 유역의 유량측정 지점 중 임진강 6개 지점, 중랑천 및 왕숙천 5개 지점, 홍천강 및 섬강 4개 지점 총 15개 지점 유량측정성과에 대한 기본적인 성과분석과 더불어 수위-유량관계곡선식의 개발, 산정 유량의 연유출률 평가, 상 하류간 유량 비교, 직접유출률 평가, 평 저수위 동시유량 비교 등을 통하여 산정된 유량자료의 적절성의 검토와 유출특성을 검토하였다. 산정된 유출률은 $49.0%{\sim}117.7%$의 범위를 보였으며, 부분적으로 계기수위가 불안정했던 지점들을 제외한 나머지 지점들의 유출률은 그 지점들의 특성을 감안할 경우 비교적 안정적인 범위내의 유출특성을 보였다. 2005년도 유출률과 비교해 보면 전체적으로 다소 높게 나타났으나, 올해 장기간 집중된 강우 특성을 고려한다면 적절한 유출범위를 보인 것으로 판단된다.

  • PDF

rating-curve of ${\sqrt{Q}}$ examine (수위-유량관계곡선식의 ${\sqrt{Q}}$ 검토)

  • Hwang-Bo, Jong Gu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.277-277
    • /
    • 2020
  • 연속 측정된 수위자료를 유량자료로 환산하는 방법중의 하나인 수위-유량관계곡선식은 국내에서 널리 사용된다. 현장에서 측정된 유량자료로 개발되는 수위-유량관계곡선식(이하 곡선식)은 일반적으로 측정성과의 정확도가 그 정도를 좌우하지만, 개발과정에서 개발자의 주관적인 판단에 의해 좌우되기도 한다. 정확한 곡선식을 개발하기 위해 개발자는 수리학적 특성(수위-${\sqrt{Q}}$, 수위-유속, 수위-단면적 등)을 검토하고, 수문학적 특성(상하류 관계, 유출분석 등)을 검토하여 최종 곡선식을 결정하게 된다. 이러한 여러 검토들 중에 수위-${\sqrt{Q}}$ 검토는 비록 정성적인 검토임에도 불구하고 곡선식의 구간분리, 기간분리, 성과의 이상유무, GZF(Gauge Height of Zero flow) 등을 확인할 수 있는 방법으로 실무에 많이 이용된다. 대부분의 곡선식은 측정성과를 기반으로 개발되어 내삽부분에서는 그 정확도가 상당히 높다고 할 수 있지만 외삽부분은 구간분리의 위치, GZF 등에 따라 큰 차이를 보일 수 있다. 그러나 기존의 수위-${\sqrt{Q}}$ 에 의한 정성적인 검토는 개발자의 숙련도에 따라 곡선식의 정확도가 좌우되는 경향이 있다. 본 연구에서는 수위-${\sqrt{Q}}$ 검토의 이론적 배경을 살펴보고 일본 곡선식의 사례를 응용하여 수위-${\sqrt{Q}}$ 검토의 정량화를 시도하였다. 또한 보다 객관적인 구간분리 위치 결정 및 GZF산정의 방법을 제시하여 개발과정에서의 오류를 최소화 할 수 있고 이는 정확한 유량자료의 생산으로 이어질 것으로 기대된다.

  • PDF

Application of the Velocity Index Method for Discharge Computation in Tidal River Basin (감조하천의 유량산정을 위한 유속지수법의 적용)

  • Song, Jae-Hyun;Lee, Suk-Ho;Kim, Chi-Young;Lee, Jin-Won;Jung, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1342-1345
    • /
    • 2009
  • 조위영향을 받는 감조하천에서는 조위변화의 주기적인 특성으로 인해 일반적인 수위와 유량의 관계가 성립하기 어렵기 때문에 최근 ADVM(Acoustic Doppler Velocity Meter) 또는 UVM (Ultrasonic Velocity Meter)과 같은 자동 유량측정 기법을 통한 연속유량측정이 이루어지고 있다. 한강대교 수위관측소는 대표적인 감조구간으로 이러한 문제를 해결하기 위해 ADVM 방식의 자동유량측정시설이 설치되어 운영 중에 있으며, H-ADCP 센서를 통해 측정된 유속을 Chiou의 무차원단면유속분포법을 이용하여 유량을 계산한다. 이는 최대유속을 유량산정의 지표로 하여 유량을 계산하는 방법으로, 본 연구에서는 한강대교 자동유량측정시설의 측정성과를 이용하여 유속지수법과 무차원유속분포법에 의해 산정된 유량을 비교하였고, 앞의 방법들을 검증하기 위하여 2008년 ADVM을 이용한 이동보트법으로 측정된 유량과 비교하였다.

  • PDF