Jung, Sung Ho;Cho, Hyo Seob;Kim, Jeong Yup;Lee, Gi Ha
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.377-377
/
2019
본 연구에서는 LSTM 모형을 이용하여 갈수예보를 위한 월 단위 전망모형개발의 대상지점으로 이수 및 치수의 측면에서 아주 중요한 한강대교 지점을 선정하였으며 유량예보를 위하여 한강수계 19개 기상관측소의 월평균강수량, 월평균기온 및 3개 댐(소양,횡성,충주)의 월방류량을 사용하여 한강대교의 월 유량을 예측하였다. 1996년부터 2016년까지의 자료는 모형의 학습, 2017년 자료는 모형의 검증에 활용하였으며 가장 최근 건설된 횡성댐 방류량의 경우 1996년~2000년의 자료가 없으므로 2001년~2005년의 자료를 반복하여 학습에 활용하였다. 모형의 예측결과는 신경망 학습 시 한강대교 월유량자료를 포함한 결과와 미포함 결과를 도출하였으며, 모의결과의 재현성 분석을 위하여 월별 예측값과 실측값의 비율을 산정하였으며 1월부터 12월까지 12개 값을 평균하여 평균예측률을 산정하고 이를 홍수기(6월~10월) 및 비홍수기(1월~5월, 11월~12월)를 구분하였다. 딥러닝 학습 시 월유량을 포함한 경우의 예측결과가 학습 시 월유량을 포함하지 않았을 경우보다 상대적으로 좋은 정확도를 보이는 것으로 분석되었다. 다만, 신경망을 실제 갈수예보에 활용하기 위해서는 예측 기상정보인 월강우량, 월평균기온, 댐방류량만을 활용하여야 하는데 학습 시월유량 미포함 결과는 예측률이 매우 낮았으며, 신경망의 학습횟수가 늘어날 경우 학습자료 과적합(over-fitting)되어 정확도가 보다 저하되는 것으로 나타났다. 그래서 기존의 현재시간 t까지의 입력자료로 학습 후 익월(t+1)의 월유량을 예측하는 (t $\rightarrow$ t+1) 방법에서 현재시점 (t-n ~ t)까지의 입력자료를 이용하여 당월(t)의 월유량을 산정하는 (t$\rightarrow$t) 방법으로 재학습 후 모형검증을 수행한 결과 전술한 익월(t+1) 유량을 예측한 결과보다 재현성이 훨씬 향상된 것으로 분석되며평균예측률이 0.99로 홍수기 및 비홍수기에서도 뛰어난 정확성을 보이고 있다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.366-366
/
2022
유역의 하천유량과 같은 수문 시계열을 모의 또는 예측하기 위한 수문 모델링에서 최근 기계 학습 방법을 활용한 연구가 활발하게 적용되고 있는 추세이다. 이러한 데이터 기반 모델링 접근법은 입출력 자료에서 관찰된 패턴을 학습하며, 특히, 장단기기억(Long Short-Term Memory, LSTM) 네트워크는 많은 연구에서 수문 시계열 예측에 대한 적용성이 검증되었으나, 장기간의 고품질 관측자료를 활용할 때 더 나은 예측성능을 보인다. 그러나 우리나라의 경우 장기간 관측된 고품질의 하천유량 자료를 확보하기 어려운 실정이다. 따라서 본 연구에서는 LSTM 네트워크의 학습 시 가용한 모든 유역의 자료를 통합하여 학습시켰을 때 하천유량 예측성능을 개선할 수 있는지 판단해보고자 하였다. 이를 위해, 우리나라 13개 댐 유역을 대상으로 대상 유역의 자료만을 학습한 모델의 예측성능과 모든 유역의 자료를 학습한 모델의 예측성능을 비교해 보았다. 학습은 2001년부터 2010년까지 기상자료(강우, 최저·최고·평균기온, 상대습도, 이슬점, 풍속, 잠재증발산)를 이용하였으며, 2011년부터 2020년에 대해 테스트 되었다. 다지점 통합학습을 통해 테스트 기간에 대해 예측된 각 유역의 일 하천유량의 KGE 중앙값이 0.74로 단일지점 학습을 통해 예측된 KGE(0.72)보다 다소 개선된 결과를 보여주었다. 다지점 통합학습이 하천유량 예측에 큰 개선을 달성하지는 못하였으며, 추가적인 가용 자료 확보와 LSTM 구성의 개선을 통해 추가적인 연구가 필요할 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.415-415
/
2018
갈수관리를 효과적으로 수행하기 위해서는 하천유량을 예측할 수 있는 방안을 마련하는 것이 중요하다. 하천유량 예측을 위해서는 강수량에 대한 예측 값을 활용하는 방안이 가장 적합하다고 할 수 있으나 강수량 예측에 대한 불확실성은 하천유량 예측의 정확도 확보에 있어 한계로 작용하고 있다. 강수량 예측에 대한 불확실성 극복을 위해서는 다양한 강수 시나리오를 설정하여 활용하는 방안을 검토할 수 있으며, 유량 예측을 하고자 하는 유역에 대해 과거 발생했던 강수량이 반복된다는 가정 하에 유량 예측을 제한적으로 수행하고 있는 상황이다. 이와 함께 강수 시나리오의 다양성 확보 차원에서 하천유량을 예측하고자 하는 유역에 대해 가뭄빈도 강수량을 사전에 산정한 후 유량 예측 과정에 활용하는 방안도 고려해볼 수 있는 방안이다. 이에 본 연구에서는 2016년 수립된 수자원장기종합계획(국토교통부, 2016)에서 제시된 중 권역별 일 강수량 자료를 이용하여 중권역별로 월 강수량을 산정한 후 월별 가뭄빈도분석을 수행하였다. 1966~2015년까지의 기간에 대한 월 강수량 자료를 이용하여 월별로 가뭄빈도분석을 수행하였으며, 빈도분석 방법으로는 확률가중모멘트법을 이용하여 적정 분포형 결정 및 갈수빈도별 강수량을 산정하여 제시하였다. 이때 빈도 강수량의 재현기간은 총 7가지 빈도(2년, 5년, 10년, 20년, 50년, 80년, 100년)를 고려하였다. 산정된 빈도 강수량을 이용하여 월 유출모형에 적용함으로써 월 유출 전망 자료 생산이 가능하며, 금강수계의 용담댐유역에 시범 적용하여 그 결과를 검토하였다. 검토 결과, 중권역별로 산정된 월별 가뭄빈도 강수량을 활용한 하천유량 예측 방법은 갈수예보에 있어 유용한 정보를 제공할 수 있을 것으로 판단된다.
A monthly Ensemble Streamflow Prediction (ESP) system was developed by applying a daily rainfall-runoff model known as the Streamflow Synthesis and Reservoir Regulation (SSARR) model to the Han, Nakdong, and Seomjin River basins in Korea. This study first assesses the accuracy of the averaged monthly runoffs simulated by SSARR for the 3 basins and proposes some improvements. The study found that the SSARR modeling of the Han and Nakdong River basins tended to significantly underestimate the actual runoff levels and the modeling of the Seomjin River basinshowed a large error variance. However, by implementing optimal linear correction (OLC), the accuracy of the SSARR model was considerably improved in predicting averaged monthly runoffs of the Han and Nakdong River basins. This improvement was not seen in the modeling of the Seomjin River basin. In addition, the ESP system was applied to forecast probabilistic runoff forecasts one month in advance for the 3 river basins from 1998 to 2003. Considerably improvement was also achieved with OLC in probabilistic forecasting accuracy for the Han and Nakdong River basins, but not in that of the Seomjin River basin.
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.223-227
/
2010
하천의 수위와 유량에 대한 정확한 정보는 이수, 치수와 같은 수자원 관리에 있어서 가장 기본적인 기초자료가 된다. 하천 수위와 유량 자료를 확보하기 위한 지속적인 직접 계측 방법은 많은 시간과 비용이 소모되며, 홍수 시에는 위험성이 존재하여 자료 확보가 불가능하다. 따라서 수치모형을 이용한 수위-유량 자료의 예측과 활용이 필요하며, 2차원 수치모형의 경계조건을 설정할 경우에도 활용할 필요성이 있다. 본 연구에서는 복단면 개수로 및 불규칙한 하상을 보이는 횡단면 상에서의 단위유량 예측을 위한 유한요소모형을 개발한다. 지배방정식은 Wark 등 (1990)이 제시한 운동량방정식을 이용하며, 단면형상과 Manning 조도계수, 그리고 수위를 알면, 결과적으로 흐름방향 단위유량의 횡방향 분포를 얻을 수 있다. 개발된 모형의 검증을 위해 실측 자료와 비교하며, 또한 Darcy-Weisbach 마찰계수를 이용하는 Darby와 Thorne (1996)의 모형 결과와도 비교한다. 검증된 모형의 알고리즘을 2차원 모형의 상류단 경계조건 설정에 활용하여, 절점별 유입유량을 차등분배 시켰을 때와 그렇지 못했을 때의 결과를 비교한다. 또한 수위를 경계조건으로 입력하였을 때 개발 모형을 활용하여 유입유량을 예측하는 활용방안을 제시한다.
Proceedings of the Korea Water Resources Association Conference
/
2009.05a
/
pp.1-5
/
2009
하천의 수위와 유량에 대한 정확한 정보는 이수, 치수와 같은 수자원 관리에 있어서 가장 기본 물리량이며, 각종 물이용 분쟁 해결, 수공구조물의 설계, 하천의 유사량 산정 및 수리 수문모형의 개발, 검증을 위한 기초자료로 이용된다. 그러나 유량의 직접 계측은 많은 비용이 소요되며, 홍수시에는 계측이 불가능하다. 지속적인 유량자료의 실측은 얻는 것은 매우 어렵다. 따라서 최근 수치 모형을 이용하여 수위-유량 곡선을 예측하고자 하는 연구가 진행되고 있다. 본 연구에서는 복단면 및 불규칙한 하상을 갖는 개수로의 수위-유량 곡선 및 단위유량 예측모형을 개발하고자 한다. 수심 적분된 2차원 운동량 방정식으로부터 정상류와 등류 조건을 가정하여 지배방정식을 구성하였으며, Manning 조도계수를 사용하여 자갈 및 모래와 같은 하상재료에 의한 전단력을 산정한다. 또한 식생항력을 이용하여 홍수터 및 제방의 식생이 수위-유량에 미치는 영향을 분석하였다.
The objective of this study is to analyze uncertainties of ensemble-based streamflow prediction method for model parameters and input data. ESP (Ensemble Streamflow Prediction) and BAYES-ESP (Bayesian-ESP) based on ABCD rainfall-runoff model were selected as streamflow prediction method. GLUE (Generalized Likelihood Uncertainty Estimation) was applied for the analysis of parameter uncertainty. The analysis of input uncertainty was performed according to the duration of meteorological scenarios for ESP. The result showed that parameter uncertainty was much more significant than input uncertainty for the ensemble-based streamflow prediction. It also indicated that the duration of observed meteorological data was appropriate to using more than 20 years. And the BAYES-ESP was effective to reduce uncertainty of ESP method. It is concluded that this analysis is meaningful for elaborating characteristics of ESP method and error factors of ensemble-based streamflow prediction method.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.102-102
/
2022
소하천의 홍수 예측은 대부분 수치모형을 직접 활용하거나, 미리 설정된 시나리오에 기반하여 수치모의를 수행하고 계산된 결과를 이용하여 추정한 경험식을 활용한다. 수치모형과 그 결과를 홍수 예·경보에 활용하기 위해서는 계측자료에 기반하여 변수를 최적화하는 등의 수치모형 검증 절차가 매우 중요하다. 소하천은 국가, 지방하천에 비해 계측자료가 절대적으로 부족한 형편으로 소하천의 홍수 모의를 위해서 주로 국가, 지방하천에서 계측한 자료를 이용하여 검증을 수행한다. 이렇게 검증된 소하천 수치모형은 국가 혹은 지방하천 유역 전체를 모의하여야 하므로 모의시간이 많이 소요되어 1시간내에 홍수유출이 이루어지는 소하천 홍수 모의에는 적절치 않다. 또한 소하천은 하천경사가 급하고 유속이 빨라 실시간 홍수모의가 어려울 수 있다. 따라서 소하천의 홍수 예측 방법으로 수치모형 보다는 계측자료에 기반한 추정삭이 보다 더 효율적이다. 행정안전부와 국립재난안전연구원은 2017년부터 소하천 홍수 예측기술 개발을 위하여 자동유량계측기술을 소하천에 확대적용하고 실시간 수리량 자료를 계측하고 있다. 자동유량계측기술은 CCTV를 이용하여 표면유속을 구하고 동시에 계측된 수위와 단면자료를 이용하여 자동으로 유량을 계측하는 기술이다. 자동유량계측기술은 저비용, 저노동, 고효율의 유량계측기술로써 부족한 계측인력과 계측의 안전성을 고려할 때 소하천에 적합한 계측기솔이라고 할 수 있다. 행정안전부와 국립재난안전연구원은 2025년 까지 전국 소하천의 10%인 2,230개 소하천에 자동유량계측기술을 확대 구축하고 실시간으로 수리량 자료를 걔측할 계획이다. 본 연구에서는 이들 계측자료와 AI 등 첨단기술에 기반한 홍수 예측기술 개발하고자 한다. 예측기술은 계측유역과 미계측유역을 구분하며, 계측유역에 대해서는 계측자료를 이용하고 미계측 유역에 대해서는 단위도법과 CES를 이용하여 구한 결과를 이용하여 강우-유량 노모그래프와 수위-유량 관계식을 개발한다. 이때 노모그래프는 토양수분조건을 고려하여 개발하며, 미계측 소하천의 예측결과는 소하천을 그룹화하고 동일 그룹내에 포함된 소하천의 계측자료를 이용하여 검증한다. 개발된 홍수 예측기술은 소하천 홍수 예·경보시스템에 적용되며 이렇게 개발된 시스템은 소하천의 인명피해 저감에 크게 기여할 수 있을 것으로 기대된다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.107-107
/
2022
소하천의 홍수 예측은 대부분 수치모형을 직접 활용하거나, 미리 설정된 시나리오에 기반하여 수치모의를 수행하고 계산된 결과를 이용하여 추정한 경험식을 활용한다. 수치모형과 그 결과를 홍수 예·경보에 활용하기 위해서는 계측자료에 기반하여 변수를 최적화하는 등의 수치모형 검증절차가 매우 중요하다. 소하천은 국가, 지방하천에 비해 계측자료가 절대적으로 부족한 형편으로 소하천의 홍수 모의를 위해서 주로 국가, 지방하천에서 계측한 자료를 이용하여 검증을 수행한다. 이렇게 검증된 소하천 수치모형은 국가 혹은 지방하천 유역 전체를 모의하여야 하므로 모의시간이 많이 소요되어 1시간내에 홍수유출이 이루어지는 소하천 홍수 모의에는 적절치 않다. 또한 소하천은 하천경사가 급하고 유속이 빨라 실시간 홍수모의가 어려울 수 있다. 따라서 소하천의 홍수 예측방법으로 수치모형 보다는 계측자료에 기반한 추정삭이 보다 더 효율적이다. 행정안전부와 국립재난안전연구원은 2017년부터 소하천 홍수 예측기술 개발을 위하여 자동유량계측기술을 소하천에 확대적용하고 실시간 수리량 자료를 계측하고 있다. 자동유량계측기술은 CCTV를 이용하여 표면유속을 구하고 동시에 계측된 수위와 단면자료를 이용하여 자동으로 유량을 계측하는 기술이다. 자동유량계측기술은 저비용, 저노동, 고효율의 유량계측기술로써 부족한 계측인력과 계측의 안전성을 고려할 때 소하천에 적합한 계측기솔이라고 할 수 있다. 행정안전부와 국립재난안전연구원은 2025년 까지 전국 소하천의 10%인 2,230개 소하천에 자동유량계측기술을 확대 구축하고 실시간으로 수리량 자료를 걔측할 계획이다. 본 연구에서는 이들 계측자료와 AI 등 첨단기술에 기반한 홍수 예측기술 개발하고자 한다. 예측기술은 계측유역과 미계측유역을 구분하며, 계측유역에 대해서는 계측자료를 이용하고 미계측 유역에 대해서는 단위도법과 CES를 이용하여 구한 결과를 이용하여 강우-유량 노모그래프와 수위-유량 관계식을 개발한다. 이때 노모그래프는 토양수분조건을 고려하여 개발하며, 미계측 소하천의 예측결과는 소하천을 그룹화하고 동일 그룹내에 포함된 소하천의 계측자료를 이용하여 검증한다. 개발된 홍수 예측기술은 소하천 홍수 예·경보시스템에 적용되며 이렇게 개발된 시스템은 소하천의 인명피해 저감에 크게 기여할 수 있을 것으로 기대된다.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.288-288
/
2021
수문 모델링을 이용하여 미계측 유역의 유출을 예측하고 나아가 수문 현상을 이해하기 위해서는 기존과는 다른 새로운 모형 보정 전략과 평가 방법이 필요하다. 위성 관측자료의 가용성 증가는 미계측 유역에서 수문 모형의 예측 성능을 확보할 기회를 제공한다. 유역 내 증발산 과정은 물 순환 과정을 설명하는 주요한 부분 중 하나이다. 또한 식생에 대한 정보는 증발산 과정과 밀접한 연관을 가지기 때문에 간접적으로 유역의 증발산 과정을 이해할 수 있는 중요한 정보이다. 본 연구는 미계측 유역의 하천유량을 예측하기 위해 위성 관측 기반의 식생 정보만을 이용하여 보정된 생태 수문 모형의 잠재력을 조사한다. 이러한 보정 방법은 관측된 하천유량 자료가 있어야 하지 않기에 미계측 유역의 하천유량 예측에 특히 유용할 것이다. 모델링 실험은 관측 하천유량 자료가 존재하는 5개의 댐 유역(남강댐, 안동댐, 합천댐, 임하댐)에 대해 수행되었다. 본 연구에서는 식생동역학이 결합 된 집체형 수문 모델을 이용하였으며, MODIS 잎면적지수(Leaf Area Index, LAI) 자료를 이용하여 모형을 보정하였다. 보정된 모형으로부터 생산된 일 유량 결과는 관측 유량 자료와 비교된다. 또한, 전통적인 관측 유량 기반의 모형 보정 방법과 비교된다. 그 결과 LAI 시계열을 이용한 모형의 보정으로 획득한 유량의 적합도는 남강댐, 안동댐, 합천댐 유역에서 KGE가 임계치 이상으로 나타나 만족스러운 결과를 보여주지만, 임하댐 유역은 KGE가 임계치 이하로 계산되었다. 그러나 해당 유역에 대해 관측 유량을 기반으로 모형 보정 결과 또한 좋지 않은 적합도를 보여주기에 이는 LAI 자료 기반 접근법의 문제가 아닌 입력정보 또는 모형 자체에 포함된 오차로 인해 해당 유역의 특성을 반영하기에 어려운 것으로 판단된다. 이러한 결과는 증발산 과정에 주요한 식생 정보의 제약만으로도 비교적 만족스럽게 유역의 수문 순환을 재현할 수 있다는 가능성을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.