• Title/Summary/Keyword: 유동-구조 연성 해석

Search Result 73, Processing Time 0.025 seconds

APPLICATION OF AN IMMERSED BOUNDARY METHOD TO SIMULATING FLOW AROUND TWO NEIGHBORING UNDERWATER VEHICLES IN PROXIMITY (인접한 두 수중운동체 주위의 유동 해석을 위한 가상경계법의 적용)

  • Lee, K.;Yang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • Analysis of fluid-structure interaction for two nearby underwater vehicles immersed in the sea is quite challenging because simulation of flow around them is very difficult due to the complexity of underwater vehicle shapes. The conventional approach using body-fitted or unstructured grids demands much time in dynamic grid generation, and yields slow convergence of solution. Since an analysis of fluid-structure interaction must be based on accurate simulation results, a more efficient way of simulating flow around underwater vehicles, without sacrificing accuracy, is desirable. An immersed boundary method facilitates implementation of complicated underwater-vehicle shapes on a Cartesian grid system. An LES modeling is also incorporated to resolve turbulent eddies. In this paper, we will demonstrate the effectiveness of the immersed boundary method we adopted, by presenting the simulation results on the flow around a modeled high-speed underwater vehicle interacting with a modeled low-speed one.

Thermal Stress Analysis and Flow Characteristics of a Bellows-Seal Valve for High Pressure and Temperature (고온.고압용 벨로우즈 실 밸브의 유동 특성 및 열응력 해석)

  • Kim, Kwang-Su;Lee, Jong-Chul;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.6 s.33
    • /
    • pp.40-46
    • /
    • 2005
  • Because of design and manufacturing costs, it is important to predict an expected life of bellows with component stresses of bellows as its design factors and material characteristics. In this study, numerical analyses are carried out to elucidate the thermal and flow characteristics of the bellows-seal gate and globe valves for high temperature (max. $600^{\circ}C$) and for high pressure (max. $104 kgf/cm^2$) conditions. Using commercial codes, FLUENT, which uses FVM and SIMPLE algorithm, and ANSYS, which uses FEM, the pressure and temperature fields are graphically depicted. In addition, when bellows have an axial displacement, thermal stress affecting bellows life is studied. The pressure and temperature values obtained from the flow analyses are adopted as the boundary conditions for thermal stress analyses. As the result of this study, we got the reasonable coefficients for valve and thermal stress for bellows, compared with existing coefficients and calculated values.

Investigation of a Thermal Stress for the Unit Cell of a Solid Oxide Fuel Cell (고체산화물 연료전지 단위셀의 열응력에 관한 연구)

  • Kim, Young-Jin;Park, Sang-Kyun;Roh, Gill-Tae;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.414-420
    • /
    • 2011
  • Thermal stress analysis of a planar anode-supported SOFC considering electrochemical reactions has been performed under operating conditions where average current density varies from 0 to 2000 $A/m^2$. For the case of the 2000 $A/m^2$ operating condition, Structural stress analysis based on the temperature distributions obtained from the CFD analysis of the unit cell has also been done. From this one way Fluid-Structure Interaction(FSI) analysis, Maximum Von-Mises stress under negligible temperature gradient fields occurs when cell components are perfectly bonded. The maximum stress of the electrolyte, cathode and anode in a unit cell SOFC is 262.58MPa, 28.55MPa and 15.1MPa respectively. The maximum thermal stress is critically dependent on static friction coefficient.

The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft (차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.

Shape Optimization of Ball Valve for High Temperature (고온용 볼 밸브의 형상 최적화)

  • Kim, Nam-Hee;Byeon, Ji-Hoon;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The main purpose of the ball valve ball is to be moved by the rotation of the stem when fully open or completely closed. In this study the heat of the initial model, which used a structure interaction analysis technique, tried to examine the structural safety of the high temperature for the ball valve. In the initial model the stress of the exiting sheet was more than the yield strength. We selected two design shapes with variables of length and thickness for the optimization of the sheet. The Kriging interpolation method was applied to a meta-model-based optimization technique. As a result, it was possible to find a thickness and length for the sheet within the yield strength. This was done by measuring the value of the capacity coefficient of the valve and evaluating the performance of the ball valve.

NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION (FSI를 활용한 2차원 곤충날개 주위 유동장 해석)

  • Lee, K.B.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF

Development of Rain Shelter for Chinese Cabbage Rainproof Cultivation (배추재배용 비가림하우스 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Moon, Doo Gyung
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.293-302
    • /
    • 2014
  • This study was carried out to develop rain shelter which can make an appropriate size and environment for Chinese cabbage rainproof cultivation. Fifty three farms with chinese cabbage rainproof cultivation system have been investigated to set up width and height of rain shelter. Mostly the width of 6m was desired for rain shelter and the height of 1.6m for their eaves, so these values were chosen as the dimensions for rain shelter. After an analysis of their structural safety and installation costs by the specifications of the rafter pipe, Ø$25.4{\times}1.5t$ and 90cm have been set as the size of rafter that such size costs the least. This size is stable with $27m{\cdot}s^{-1}$ of wind velocity and 17cm of snow depth. Therefore it is difficult to apply this dimension to area with higher climate load. In order to sort out such problem, the rain shelter has been designed to avoid damage on frame by opening plastic film to the ridge. Once greenhouse band is loosen by turning the manual switch at the both sides of rain shelter and open button of controller is pushed then switch motor rises up along the guide pipe and plastic film is opened to the ridge. Chinese cabbage can be damaged by insects if rain shelter is opened completely as revealed a field. To prevent this, farmers can install an insect-proof net. Further, the greenhouse can be damaged by typhoon while growing Chinese cabbage therefore the effect of an insect-proof net on structural safety has been analyzed. And then structural safety has been analyzed through using flow-structure interaction method at the wind condition of $40m{\cdot}s^{-1}$. And it assumed that wind applied perpendicular to side of the rain shelter which was covered by insect-proof net. The results indicated that plastic film was directly affected by wind therefore high pressure occurred on the surface. But wind load on insect-proof net was smaller than on plastic film and pressure distribution was also uniform. The results of structural analysis by applying pressure data extracted from flow analysis indicated that the maximum stress occurred at the end of pipe which is the ground part and the value has been 54.6MPa. The allowable stress of pipe in the standard of structural safety must be 215 MPa or more therefore structural safety of this rain shelter is satisfied.

Quasi-Transient Method for Thermal Response of Blunt Body in a Supersonic Flow (준-비정상해석 기법을 통한 초음속 유동 내 무딘 물체의 열응답 예측)

  • Bae, Hyung Mo;Kim, Jihyuk;Bae, Ji-Yeul;Jung, Daeyoon;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.495-500
    • /
    • 2017
  • In the boundary layer of supersonic or hypersonic vehicles, there is the conversion from kinetic energy to thermal energy, called aerodynamic heating. Aerodynamic heating has to be considered to design supersonic vehicles, because it induces severe heat flux to surface. Transient heat transfer analysis with CFD is used to predict thermal response of vehicles, however transient heat transfer analysis needs excessive computing powers. Loosely coupled method is widely used for evaluating thermal response, however it needs to be revised for overestimated heat flux. In this research, quasi-transient method, which is combined loosely coupled method and conjugate heat transfer analysis, is proposed for evaluating thermal response with efficiency and reliability. Defining reference time of splitting flight scenario for transient simulation is important on accuracy of quasi-transient method, however there is no algorithm to determine. Therefore the research suggests the algorithm with various flow conditions to define reference time. Supersonic flow field of blunt body with constant acceleration is calculated to evaluate quasi-transient method. Temperature difference between transient and quasi-transient method is about 11.4%, and calculation time reduces 28 times for using quasi-transient method.

Development of Oil Flushing System with Microbubble Generator (마이크로 버블 발생장치와 결합된 오일 플러싱 장치 개발)

  • Hong, Sung-Ho;Lee, Kyung-Hee;Jeong, Nam-Wha
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.109-114
    • /
    • 2022
  • This paper reports the development of an oil flushing system combined with a microbubble generator. Oil flushing plays a crucial role in regulating the lubricant's performance during the lubricant replacement process. Moreover, harmful contaminants, such as sludge, wear particles, and rust, from piping systems or lubrication system can be removed by oil flushing. Oil flushing aims to increase the system's efficiency using a dedicated flushing oil, increasing of the supply pressure and generating a vortex. In addition, it helps the mechanical system or equipment achieve peak performance and reduces the potential for premature failure. However, the contaminant-removal applications of existing oil flushing system are limited. In this research, we aim to improve the performance of oil flushing system by incorporating a microbubble generator, which uses the venture effect to generate microbubbles and mixes them with lubricant. The microbubbles in the blended lubricant remove contaminants from the lubrication system more effectively. Structural mechanics and fluid dynamics are analyzed through fluid-structure interaction (FSI) analysis, and the numerical analysis results are used for the designing the system. The magnitude of the maximum stress is investigated based on the pressure results obtained by the CFD analysis; through the CFD analysis, the mixing ratio of air (bubble) and lubricant is evaluated using the volume of fluid (VOF) model according to the working conditions.

Load Ratio between Two Adjacent Wings of Load Cell Type Anemometer according to Wind Direction (풍향에 따른 로드 셀형 풍향풍속계의 인접한 두 날개 사이의 하중 비)

  • Han, Dong-Seop
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.357-361
    • /
    • 2012
  • Anemometer is a meteorological instrument that measures wind direction and wind speed in real time, and is mounted to the cranes that are used at ports, shipbuilding yards, off-shore structure, or construction sites that are influenced by wind, and it is used in conjunction with the safety system. Load cell-type anemometer measures the wind direction through the ratio of load between 4 positions by mounting the thin plate to 4 load cells, and measures wind velocity through the summation of loads. In this study, we compared and analyzed the results in the theoretic approach, analytic approach and experimental approach to derive the correlation between load ratio and wind direction. Wind direction was selected as the design variable, and selected 9 wind direction conditions from $0^{\circ}{\sim}90^{\circ}$ with $11.25^{\circ}$ space for analysis, and 10 wind direction conditions with $10^{\circ}$ space for experiment.