• Title/Summary/Keyword: 유동-구조연성해석

Search Result 73, Processing Time 0.036 seconds

Damage Assessment and Aseismic Capacity Evaluation of Existing Structures (기설구조물의 손상도 및 내진능력 평가방법)

  • 윤정방;송종걸;김유진
    • Computational Structural Engineering
    • /
    • v.11 no.3
    • /
    • pp.199-212
    • /
    • 1998
  • 본 연구에서는 기설구조물에 대한 손상도 추정기법과 내진능력평가 방법에 대하여 연구하였다. 구조물의 손상도를 추정하는 방법으로는 소수의 계측 데이터를 이용한 모드섭동법(inverse modal perturbation)을 이용하였다. 구조물의 손상은 강성행렬의 감소로 표현하여, 각 요소행렬에 대한 손상을 손상지수를 사용하여 나타내었다. 구조적 손상과 이에 기인한 고유진동 특성의 변화량과의 관계를 섭동방정식으로부터 구한 후, 이로부터 손상지수와 고유진동 특성의 변화량과의 관계를 유동하였다. 따라서 손상 전과 후에서 구조물의 고유진동수와 모드형상을 측정하여 섭동식의 해를 구함으로써 구조물의 강성행렬의 감소로 나타나는 구조물의 손상도를 추정하게 된다. 손상도 추정에 의해 평가된 강성의 변화량에 기인한 손상 후의 기설구조물의 지진응답, 내진능력과 지진손상도의 평가를 손상전과 비교하였다. 내진능력은 구조부재에서 회전연성도 능력의 경험식을 이용하여 평가하였고, 지진손상도의 평가는 가장 많이 사용되는 방법인 Park & Ang 방법을 사용하였다. 예제해석은 다른 지진하중을 받는 2층과 8층의 예제구조물에 대해서 수행하였다.

  • PDF

Study on the Performance of a Centrifugal Compressor Using Fluid-Structure Interaction Method (유체-구조 연성해석을 이용한 원심압축기 운전익단간극과 성능 예측)

  • Lee, Horim;Kim, Changhee;Yang, Jangsik;Son, Changmin;Hwang, Yoonjei;Jeong, Jinhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.357-363
    • /
    • 2016
  • In this study, we perform a series of aero-thermo-mechanical analyses to predict the running-tip clearance and the effects of impeller deformation on the performance using a centrifugal compressor. During operation, the impeller deformation due to a combination of the centrifugal force, aerodynamic pressure and the thermal load results in a non-uniform tip clearance profile. For the prediction, we employ the one-way fluid-structure interaction (FSI) method using CFX 14.5 and ANSYS. The predicted running tip clearance shows a non-uniform profile over the entire flow passage. In particular, a significant reduction of the tip clearance height occurred at the leading and trailing edges of the impeller. Because of the reduction of the tip clearance, the tip leakage flow decreased by 19.4%. In addition, the polytrophic efficiency under operating conditions increased by 0.72%. These findings confirm that the prediction of the running tip clearance and its impact on compressor performance is an important area that requires further investigation.

An FSI Simulation of the Metal Panel Deflection in a Shock Tube Using Illinois Rocstar Simulation Suite (일리노이 록스타 해석환경을 활용한 충격파관 내 금속패널 변형의 유체·구조 연성 해석)

  • Shin, Jung Hun;Sa, Jeong Hwan;Kim, Han Gi;Cho, Keum Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.361-366
    • /
    • 2017
  • As the recent development of computing architecture and application software technology, real world simulation, which is the ultimate destination of computer simulation, is emerging as a practical issue in several research sectors. In this paper, metal plate motion in a square shock tube for small time interval was calculated using a supercomputing-based fluid-structure-combustion multi-physics simulation tool called Illinois Rocstar, developed in a US national R amp; D program at the University of Illinois. Afterwards, the simulation results were compared with those from experiments. The coupled solvers for unsteady compressible fluid dynamics and for structural analysis were based on the finite volume structured grid system and the large deformation linear elastic model, respectively. In addition, a strong correlation between calculation and experiment was shown, probably because of the predictor-corrector time-integration scheme framework. In the future, additional validation studies and code improvements for higher accuracy will be conducted to obtain a reliable open-source software research tool.

Analytical Study on Inner Flow and Structural Stiffness in Vane Type of Vacuum Pump (베인형 진공펌프의 내부유동과 구조 강성에 관한 해석적 연구)

  • Son, Taekwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.201-206
    • /
    • 2017
  • In the study, the inner flow characteristics were analyzed by modifying the inner design parameter of the vane-type vacuum pump. The effect of pressure generated by the inner flow of pump on the rotor and vane was analyzed. The design parameter was analyzed using the angle variation of tilting and rotation of the vane. MRF was used for the analysis conducted using a virtual condition where the rotor and vane are rotated. The pressure gained from the load of the rotor and vane in the flow analysis is used for the structure analysis. Based on the results, the effect of variable vane design was revealed in structural strength. The effect of centrifugal and friction force generated during pump operation on structural strength was also analyzed.

Numerical Analysis of Vortex Induced Vibration of Circular Cylinder in Lock-in Regime (Lock-in 영역에서 원형실린더의 와류유기진동 전산해석)

  • Lee, Sungsu;Hwang, Kyu-Kwan;Son, Hyun-A;Jung, Dong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • The slender structures such as high rise building or marine riser are highly susceptible to dynamic force exerted by fluid-structure interactions among which vortex-induced vibration(VIV) is the main cause of dynamic unstability of the structural system. If VIV occurs in natural frequency regime of the structure, fatigue failure likely happens by so-called lock-in phenomenon. This study presents the numerical analysis of dynamic behavior of both structure and fluid in the lock-in regimes and investigates the subjacent phenomena to hold the resonance frequency in spite of the change of flow condition. Unsteady and laminar flow was considered for a two-dimensional circular cylinder which was assumed to move freely in 1 degree of freedom in the direction orthogonal to the uniform inflow. Fluid-structure interaction was implemented by solving both unsteady flow and dynamic motion of the structure sequentially in each time step where the fluid domain was remeshed considering the movement of the body. The results show reasonable agreements with previous studies and reveal characteristic features of the lock-in phenomena. Not only the lift force but also drag force are drastically increasing during the lock-in regime, the vertical displacement of the cylinder reaches up to 20% of the diameter of the cylinder. The correlation analysis between lift and vertical displacement clearly show the dramatic change of the phase difference from in-phase to out-of-phase when the cylinder experiences lock-in. From the results, it can be postulated that the change of phase difference and flow condition is responsible for the resonating behavior of the structure during lock-in.

A Study on the Nonlinear Behavior of Check Valve System (체크밸브의 비선형거동에 관한 연구)

  • 박철희;홍성철;박창배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.35-41
    • /
    • 1993
  • 산업사회가 발전함에 따라 거대한 플랜트(plant)를 포함하여, 원자력 발전소 와 로켓트 등과 같이 구조적 안전성과 정확한 성능의 확보가 극히 중요시되 는 설비들이 많이 등장하고 있다. 이들 설비를 구성하고 있는 파이프계 (piping system)는 강성 또는 연성재료 및 각종 valve등으로 구성되어 있기 때문에, 고온 고압 고속의 유체가 파이프 내부를 흐를 때 일으키는 진동현상 및 플랜트의 과도운전 상황에서의 일어나는 수격현상(water hammer 또는 steam hammer)과 이로 기인한 제반 진동문제는 안전성확보 측면에서 많은 관심이 고조되고 있다. 이와 관련되어 유체유발진동에 관한 많은 연구들이 수행되었으며, 파이프계에 장착된 밸브에 대한 연구는 Weaver등에 의하여 실험적, 이론적으로 수행되었다. 그들은 유동방정식에서 비정상 베르누이 방 정식을 사용하여 내부유동방정식을 간략하게 유도하였으나, jet flow에 의한 유체의 운동량변화를 고려하지 않고 해석되어 그 결과에 의문이 제기된다. 그러므로 본 연구에서는 체크밸브(check valve)가 부착된 파이프계에서 일어 나는 유체유발진동 및 안정성에 관한 이론적 연구를 수행하여, 파이프계의 설계에 필요한 파라미터의 영향을 파악하고자 한다. 원자력 발전소와 같이 구조적 안정성이 요구되는 플랜트를 국내 기술로 설계 시공하려는 국내 실 정에서 이로 인한 파이프계에 발생할 수 있는 유체유발진동과 안정성을 예 측할 수 있는 해석이론은 파이프계의 설계 및 운전조건의 선정에 있어서 그 의의가 크다고 할 수 있겠다.

  • PDF

Life Assessment of Gas Turbine Blade Based on Actual Operation Condition (실 운전조건을 고려한 가스터빈 블레이드 수명평가)

  • Choi, Woo Sung;Song, Gee Wook;Chang, Sung Yong;Kim, Beom Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1185-1191
    • /
    • 2014
  • Gas turbine blades that have complex geometry of the cooling holes and cooling passages are usually subjected to cyclic and sustained thermal loads due to changes in the operating characteristic in combined power plants; these results in non-uniform temperature and stress distributions according to time to gas turbine blades. Those operation conditions cause creep or thermo-mechanical fatigue damage and reduce the lifetime of gas turbine blades. Thus, an accurate analysis of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a gas turbine. It is well known that computational analysis such as cross-linking process including CFD, heat transfer and stress analysis is used as an alternative to demonstration test. In this paper, temperatures and stresses of gas turbine blade were calculated with fluid-structural analysis integrating fluid-thermal-solid analysis methodologies by considering actual operation conditions. Based on analysis results, additionally, the total lifetime was obtained using creep and thermo-mechanical damage model.

Forensic Engineering Study on Structure Stability Evaluation of Deep Cement Mixing Vessel using ADINA Software (ADINA 를 이용한 DCM 선박의 구조안정성 평가에 관한 연구)

  • Kim, Eui Soo;Kim, Jong Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1283-1290
    • /
    • 2014
  • Recently, a wide variety of simulation techniques such as structure analysis and structure-fluid interaction analysis are being employed in the field of forensic engineering for resolving the problem of legal liability for accidents and disasters. In this study, we performed a forensic engineering investigation of a sinking accident of a DCM (deep cement mixing) vessel. The accident vessel was built as a dedicated SCP (sand compaction pile) vessel at the time of vessel building, and the DCM vessel was structurally modified, e.g., by increasing the leader height and constructing for leader expansion, without a stability review. To determine the effects of expansion and modification of structures in this sinking accident, structural stability evaluation was performed using commercial software for structural analysis, ADINA software. Through an analysis and comparison of simulation results obtained using ADINA software with the results of the structural modification and expansion, we could determine the exact cause of the sinking accident of the DCM vessel.

The Structural Analysis of Three-Way Catalyst Substrate using Coupled Thermal-Fluid-Structural Analysis (열유동구조연성해석을 이용한 삼원촉매담체의 구조 해석)

  • Lee, Sung-Riong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3035-3043
    • /
    • 2015
  • This study evaluates the thermal structural safety of the three-way catalyst(TWC) substrate for domestic passenger cars. Thermal-fluid boundary conditions on the TWC substrate were determined by D-optimal DOE. The thermal stresses on the TWC substrate were calculated by the temperature distribution obtained from the CFD results. The safety factors of the TWC substrate were determined by statistical strength and stress distributions and estimated to be 0.275. The thermal stresses for TWC substrate exceeded the strength of the material. Therefore, it is necessary to redesign the TWC substrate because it has much shorter service life than design life.

FSI analysis on wind turbine blade (풍력발전기의 블레이드에 대한 FSI 해석)

  • Kim, Yun-Gi;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2829-2832
    • /
    • 2007
  • In this study, one-way fluid structure interaction analysis(FSI) on wind turbine blade was performed. Both a quantitative fluid analysis on 3-bladed wind turbine and a structural analysis using the surface pressure data resulting from fluid analysis were carried out. Streamlines and angle of attack was easily acquired from analysis results, we showed the inlet velocity that the stall begins to occur. In the structural analysis, structural displacement and maximum stress of the two comparative models was calculated. The location that has maximum stress was found. The pressure difference between back and front part of the blade increases as the inlet velocity increase. The torque and maximum with regard to inlet velocity was also presented.

  • PDF