• Title/Summary/Keyword: 유동 형태

Search Result 1,094, Processing Time 0.025 seconds

핵연료 봉의 Fretting Wear어 대한 열수력학적 원인 분석

  • 김상녕;정성엽
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.496-501
    • /
    • 1998
  • 최근 국내의 PWR 발전소에서는 유체유발진동에 의한 핵연료의 Fretting Wear가 많이 발생하였다. 이는 Baffle Jetting이나 그 밖의 요인도 있을 수 있으나 핵연료의 장주기화, 높은 열적여유도등의 설계요건을 만족하기 위한 노심 내의 유동조건 변화에 기인한다. 특히 고리 2호기에서 발생한 핵연료 손상 중 15%정도가 유체유발진동으로 추정되고 있다. 따라서 본 연구는 손상 핵연료의 노심내 위치, 부위, 유동조건 등으로 부터 유체유발진동의 주요 손상 원인을 규명하는데 있다. 이를 위해 핵연료 집합체에서 발생할 수 있는 유체유발진동 메카니즘의 특징과 유동조건, 손상 핵연료의 노심내 위치, 파손 부위, 집합체와 지지격자의 기하학적 형태를 고려한 유동 방향 등을 연관 분석 결과 파손을 일으키는 주요원인을 단일 집합체 내에서 발생되는 Vortex Shedding과 인접한 집합체 사이에서 발생되는 Fluidelastic Instability의 중복효과로 규명하였다 또한 최근 핵연료 설계에 도입된 Mixing Vane의 효과가 과도하여 핵연료 손상을 일으키는 가설을 정립하였다.

  • PDF

순환유동층 연소설비를 이용한 열병합설비의 특성 및 전망

  • 조재수
    • Journal of the KSME
    • /
    • v.30 no.6
    • /
    • pp.521-534
    • /
    • 1990
  • 유동층 연소방식을 이용한 열병합설비는 상당수가 전세계적으로 성공리에 운전되고 있으며, 연료의 폭넓은 수용성, 저온연소에 기인한 저공해 특성으로 인해 기존연소 방식보다 월등한 강 점이 인정되고 있다. 따라서 에너지 활용의 극대화와 환경오염의 최소화라는 두가지 명제를 만족시키는 금세기 최대의 매력적인 석탄 연소 방법으로서 유동층 연소 기술은 지속적인 확산이 예상된다. 그러나 그 동안의 문제가 제작자와 사용자의 노력에 의해 거의 해결되었다고는 하나, 아직도 대형화 및 기본설계상의 문제가 부분적으로 해결되어야할 숙제로 남아 있다. 최근의 추세는 다양한 형태의 설계개념이 차츰 서로 비슷해지는 추세로서, 이는 구체적인 설계과정에서 최적 시스템으로 취합되는 경향을 나타내고 있다. 각공정에 맞는 최적 시스템/최적 설계를 도 입하기 위해서는 각 제작자의 독특한 시스템에 대한 검토 분석이 있어야 하며, 사용코자하는 연료와 석회석의 물리화학적 특성을 사전에 분석하여 선택코자 하는 유동층 시스템과의 적합성 여부에 대한 사전 검토가 요망된다.

  • PDF

An Experimental Study on the Flow Characteristics of a Supersonic Turbine Cascde as Nozzle Installation Angle (노즐 설치각에 따른 초음속 터빈 익렬의 유동 특성에 대한 실험적 연구)

  • Cho Jong-Jae;Jeong Soon-In;Kim Kui-Soon;Park Chang-Kyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • In this paper, a small supersonic wind tunnel is designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The flow is visualized by means of a sin91e pass Schlieren system. The supersonic cascade with 3-dimensional supersonic nozzle was tested over a wide range of nozzle installation angle. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions are observed.

An experimental study on the flow characteristics of a 2-D supersonic turbine with pressure ratio (압력비에 따른 2차원 초음속 터빈의 유동특성에 대한 실험적 연구)

  • Jeong Soo-In;Kim Kui-Soon;Kim Jin-Han;Lee Eun-Seok;Cho Jong-Jae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.99-108
    • /
    • 2004
  • In this paper, a small supersonic wind tunnel is designed and built to study the flow characteristics of a supersonic impulse turbine. The flow is visualized by means of a single pass Schlieren system. The supersonic cascade with 2-dimensional supersonic nozzle was tested over a wide range of pressure ratio. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions are observed.

  • PDF

Numerical Study on Flow Characteristics of Synthetic Jet with Rectangular and Circular Slot Exit (사각형 및 원형 출구 Synthetic Jet의 유동 특성에 대한 수치적 연구)

  • Kim, Min-Hee;Kim, Woo-Re;Kim, Chong-Am;Jung, Kyung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.585-595
    • /
    • 2011
  • The flow characteristics of synthetic jet depending on rectangular and circular jet exit configuration are investigated using numerical computation with cross flow. In rectangular slot, synthetic jet generates the strong vortex but supplies fewer momentum and effectiveness of flow control is reduced along flow direction. In circular slot, regular vortex is formed from slot center to end. It affects the wider region than rectangular slot. The distribution of wall shear stress is considered in order to indicate the effectiveness of flow control device for flow separation delay. Consequently, circular slot is a more suitable candidate for delaying flow separation. In order to derive the optimal shape of a circular slot exit, hole gap and diameter that affect the flow structure and flow control were analyzed. As a result, consider the hole diameter and gap of circular slot exit design, effectiveness of the flow control can be increased.

Experimental investigation on the heat transfer characteristics of an oscillatory pipe flow (원관 내 왕복유동에 따른 열전달특성의 실험적 연구)

  • Park, Sang-Jin;Lee, Dae-Yeong;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1959-1970
    • /
    • 1996
  • Effects of oscillatory flow upon heat transfer characteristics have been studied experimentally for oscillating flow in a circular tube. The experimental apparatus was designed to simulate the heat exchangers of the Stirling or Vuilleumier cycle machines and the test section consists of heater and cooler. Measurements were presented of heat flux, axial wall temperature distribution, and radial temperature profile of the working fluid for several cases of oscillation frequency and swept distance ratio. The influences of two main parameters, frequency and tidal displacement of the oscillation were investigated. Then the heat transfer coefficient at the heater is obtained. The carried by the authors with a assumption of oscillatory laminar slug flow.

The Prediction of Phase Morphology of Injection Molded Polymer Blends (사출성형된 고분자 블렌드의 형태학적 상구조 예측)

  • Son, Young-Gon
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.193-208
    • /
    • 2004
  • Morphology of injection molded polymer blend was investigated by experimental and theoretical approach. In experiments, the effects of injection speed and injection temperature on the morphology of injection molded MPPO/Nylon 6 blend were investigated. The morphology distribution across the part thickness was clearly observed in injection molded blend. We could observe several distinct regions across the thickness of molded part: skin layer, subskin layer and core region. The skin layer where the dispersed phase is fine and highly deformed to the flow direction is observed to be located near the part surface. The subskin layer located at inner region of the skin layer also observed. In the subskin layer, the dispersed phase is coarser than that of skin layer and deforms to the flow direction. Based on the experimental results, the calculation scheme to predict the morphology of injection molded polymer blend was suggested. The morphology of injection molded polymer blend could be predicted in corporation with the result of flow analysis obtained from commercial software for injection molding process and the theory of drop behavior under the flow. The suggested calculation scheme could predict the effect of injection conditions on the morphology of injection molded parts.

The Plastic Deformation of Combustion Chamber During the Flow Forming Process with Initial Preform Thickness (유동성형에서의 연소관 예비성형체 두께별 소성변형 형태)

  • 윤수진;이경훈;은일상
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.89-103
    • /
    • 1997
  • The flow forming process which is one of the technologies to manufacture the various missile propulsion combustion chambers, was analyzed using the rigid plasticity finite element modeling. The numerical analysis was performed using 3 rollers which forms the basic tools for the plastic deformation of the tubes. As a result of this study, the distribution of the plastic strain and the stress are obtained and compared. It was found that there exists a significant difference in the plastic deformation as well as the stress distribution due to the preform initial thickness as a result of these numerical experiments. Moreover, under ideal process condition, flow forming process results in a uniform plastic deformation in the radial direction.

  • PDF

Effect of Coolant Flow Pattern on Metal Temperature of Combustion Chamber (엔진 내 냉각수 유동형태가 연소실 벽면온도에 미치는 영향에 관한 연구)

  • 민병순;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.14-21
    • /
    • 1993
  • The effect of coolant flow pattern on the metal temperature of the combustion chamber was studied in 1.5L and 1.8L gasoline engines. One of the main important points in the design of the water jacket is the increase of the coolant flow velocity. In this paper, the water jackets of the cylinder head and the cylinder block were visualized for the purpose of improving the coolant flow pattern. By the use of this technique, the optimal design of the size and th location of the water transfer fole was possible. And, to lower the metal temperatures of the thermally critical parts, the drilled water passages were employed. To investigate of effect of the improved flow pattern and the drilled water passages, the metal temperatures of the combustion chamber were measured. As a result of the temperature measurement, it was found out that both the change of flow pattern and the drilled water passages have significant effect on the reduction of the peak metal temperature.

  • PDF

Cavitating Flow in Circular and Elliptical Nozzles (원형 노즐과 타원형 노즐에서 발생되는 캐비테이션 유동)

  • Ku, Kun-Woo;Hong, Jung-Goo;Lee, Choong-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1005-1012
    • /
    • 2011
  • The purpose of this study was to investigate the internal nozzle flow and cavitation characteristics numerically in both circular and elliptical nozzles. The program FLUENT 6.2 was used to perform the numerical simulation of the cavitating flow in the nozzles. A comparison was made between the cavitation shapes predicted numerically and those found experimentally in order to validate the numerical solution. This study showed that the cavitation in the circular nozzle had a cylindrical shape that was symmetrical with the nozzle axis. However, the cavitation in the elliptical nozzles had a horseshoe-like shape. In addition, the radial velocity distribution varied between the major and the minor axis planes when the working fluid was flowing into the inlet.