• Title/Summary/Keyword: 유동 균일화 계수

Search Result 6, Processing Time 0.02 seconds

A study on a uniformity of flow field in a duct cooler of FGD system (배연탈황설비 덕트쿨러에서의 유동균일화에 관한 연구)

  • 배진효;김광추;박만흥;박경석;이종원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.120-130
    • /
    • 2000
  • A flow uniformity in a duct cooler of duct system of FGD(Flue Gas Desulfurization) linking a reheater and a absorber has been investigated in the present study. For this purpose, the flow characteristics according to the geometry of a vertical and horizontal vane in a curved duct of the duct system has been examined with the aid of a numerical simulation. The results indicate that the vertical vane with a little deflection toward a recirculation region makes the flow distribution in the duct cooler more uniform than that without deflection, and horizontal vane does not effect the change of the flow distribution for an angle of inclination. The mean flow uniform factor shows its maximum for duct system without the vane(case NP) and its minimum for the vertical vane with a little deflection(case P-0.8-0) .

  • PDF

Numerical Study of the Flow Characteristics in a Diesel Exhaust System with a Vane-Type Static Mixer (베인 타입 스태틱 믹서의 기하학적 변수에 따른 디젤 배기관 내 유동특성에 관한 연구)

  • Kang, Kyoung-Nam;Lee, Jee-Keun;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.397-404
    • /
    • 2012
  • In this research, a numerical study was carried out on the mixing and flow characteristics of a vane-type static mixer for the reduction of $NO_x$ in the SCR systems from the diesel exhaust environments. The mixer was located at a distance of 57 times the pipe diameter away from the inlet. The analyses were performed by changing various parameters such as vane angles, blockage ratio, and location of the vane. Flow characteristics through the mixer were characterized by the uniformity index, swirl number, and pressure drop. The results show that uniformity index, pressure coefficient and swirl number are substantially influenced by the vane angle, blockage ratio and position of the vane of the mixer. In particular, the swirl number was increased when the vane was located near the pipe wall, or the vane angle was increased or scale was extended.

Simulation of the Vortex Shedding from a Circular Cylinder by Means of the Vortex Cloud Model (Vortex Cloud Model에 의한 추상체 주위의 Vortex 유출 Simulation)

  • D.K. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.62-74
    • /
    • 1993
  • The vortex shedding from a circular cylinder placed in a steady uniform stream is simulated by the vortex cloud model of the discrete vortex method. The vorticity created at the cylinder surface is discretely represented by a number of nascent vortices at each time step and the motion of these cumulative vortices is monitored to produce the evolution of the vortex distribution pattern. Convection of vortices was traced by the vortex-in-cell technique and the force coefficients were calculated by both Sarpkaya's formulae and Lee's formulae for comparison. Discussions concerning the interrelation between the computational parameters and some principles for choosing the suitable values are included.

  • PDF

Controlled Production of Monodisperse Polycaprolactone Microparticles using Microfluidic Device (미세유체장치를 이용한 생분해성 Polycarprolactone의 단분산성 미세입자 생성제어)

  • Jeong, Heon-Ho
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.283-288
    • /
    • 2019
  • Monodisperse microparticles has been particularly enabling for various applications in the encapsulation and delivery of pharmaceutical agents. The microfluidic devices are attractive candidates to produce highly uniform droplets that serve as templates to form monodisperse microparticles. The microfluidic devices that have micro-scale channel allow precise control of the balance between surface tension and viscous forces in two-phase flows. One of its essential abilities is to generate highly monodisperse droplets. In this paper, a microfluidic approach for preparing monodisperse polycaprolactone (PCL) microparticles is presented. The microfluidic devices that have a flow-focusing generator are manufactured by soft-lithography using polydimethylsiloxane (PDMS). The crucial factors in the droplet generation are the controllability of size and monodispersity of the microdroplets. For this, the volumetric flow rates of the dispersed phase of oil solution and the continuous phase of water to generate monodisperse droplets are optimized. As a result, the optimal flow condition for droplet dripping region that is able to generate uniform droplet is found. Furthermore, the droplets containing PCL polymer by solvent evaporation after collection of droplet from device is solidified to generate the microparticle. The particle size can be controlled by tuning the flow rate and the size of the microchannel. The monodispersity of the PCL particles is measured by a coefficient of variation (CV) below 5%.

Manufacturing of Monodisperse Pectin Hydrogel Microfibers Using Partial Gelation in Microfluidic Devices (미세유체 장치에서 부분젤화법을 이용한 단분산성 펙틴 하이드로젤 미세섬유의 제조)

  • Jin, Si Hyung;Kim, Chaeyeon;Lee, Byungjin;Shim, Kyu-Rak;Kim, Dong Young;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.270-278
    • /
    • 2017
  • This study introduces a method to easily fabricate highly monodisperse pectin hydrogel microfibers in a microfluidic device by using partial gelation. The hydrodynamic parameters between the pectin aqueous solution and the calcium ions containing oil solution are precisely controlled to form a stable elongation flow of the pectin aqueous solution, and partial gelation of the pectin aqueous solution is performed by the chelating of the calcium ions at the interface between the two phases. The partially gelled pectin aqueous solution is phase-separated from the oil solution in an aqueous calcium chloride solution outside the microfluidic device and is completely gelled to produce monodisperse pectin hydrogel microfibers. The thickness of the pectin hydrogel microfiber is controlled in a reproducible manner by controlling the volumetric flow rate of the initially injected pectin aqueous solution. The pectin hydrogel microfibers were 200 to 500 micrometers in diameter and had a coefficient of variation below 5% under all thickness conditions, indicating that the pectin hydrogel microfibers produced by partial gelation are highly monodisperse. In addition, biomaterials can be immobilized to the pectin hydrogel microfibers produced by a single process, demonstrating the possibility that our pectin hydrogel microfiber can be used as carriers for biomaterials or tissue engineering.

Thermoelectric Properties of Rapidly Solidified and extruded N-type $Bi_2Te_{2.85}Se_{0.15}$ alloy with extrusion die angle (급속응고법에 의한 $Bi_2Te_3$계 N형반도체 열전재료의 압출 다이각 변화에 따른 열전특성)

  • 권동진;홍순직;손현택;천병선;이윤석
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.29-29
    • /
    • 2001
  • 열전재료는 열전현상을 가지고 있어 열전발전과 열선냉각이 가능하기 때분에 해저용, 우주용, 군사용의 특수 전원으로 이미 실용화되어있고, 반도체, 레이저 다이오드, 적외선 검출소자 등의 냉각기로 쓰여지고 있어 많은 연구자들이 이들 재료에 대한 연구에 관을 갖고 열전특성을 향상시키기 위하여 많은 연구를 진행하고 있다 이들 열전재료는 사용 온도구역에 따라 3종류로 구분하고 있으며, 실온부근의 저온 영역(20$0^{\circ}C$)이하에서는 $Bi_2Te_3$계 재료, 중온영역(20$0^{\circ}C$~50$0^{\circ}C$)에서sms (Pb,Ge) Te계 재료, 고온영역(50$0^{\circ}C$~lOoo$^{\circ}C$)에서는 Si-Ge계 Fe Si계 재료가 이용되고 있다. 본 연구에서는 실온에서 성능지수가 높은 Bi_2(Te,Se)_3$에 대한 연구를 진행하였다. Bi_2(Te,Se)_3$계 열전재료는 기존의 공법인 Zone melting법을 이용하는 경우 성능지수가 높으나, 단위정이 Rhombohedral 구조파 기저면(basal plane)에 벽개성이 있는 관계로 재료의 적지 않은 손실과 가공상의 어려움이 있다. 또한 사료전체에 걸쳐 화학적으로 균질한 고용체를 얻는 것도 어려운 문제점으보 부각되고 있디 따라서 이와같은 문제점을 보완하기 위하여 용질원자의 편석감소, 고용도의 증가, 균일 고용체 형성, 결정립의 미세화등의 장점이 있는 급속응고법을 본 연구에 응용하였다. 본 연구에서는 위에서와 같은 급속응고의 장점과 대량 가공이 능늪한 연간압출공정을 이용하여 제조된 분말을 성형화 하였다. 특히 열간압출 가공에 있어서 압축다이 각 변화는 재료의 소성유동에 매우 중요한 역하을 하게되며, 이와 갇은 소성유동은 본 재료의 열전특성에 중요한 영향을 미치는 C 면 배양에 중요한 역할을 한 것으 로 기대된다. 이에 본 연구에서는 압출다이 각도 변화에 따른 미세조직변화와 이들 조직이 강도와 열전특성에 미치는 영향을 석하고자 한다. 압출재의 미세조직은 XRD(X Ray Diffraction), SEM(Scanning Electron Microscopy)으로 분석하였으며, 열전특성인 Seebeck계수($\alpha$)와 전기비저항( $\rho$ )은 열전측정장치로, 기계적 강도는 MTS장비를 이용하여 이루어졌다. 또한 압축다이각도 변화에 따른 결정방위 해석은 모노크로미터가 장착된 X RD장비감 이용하여 분석되었다.

  • PDF