• Title/Summary/Keyword: 유동 균일성

Search Result 159, Processing Time 0.032 seconds

Study on Transient Analysis for Flow Characteristics in DPF (DPF의 유동특성에 관한 과도해석 연구)

  • Shin, Dong-Won;Yoon, Cheon-Seog
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.131-138
    • /
    • 2010
  • Because real flow of engine exhaust is very hot and highly transient, it may cause thermal and inertial loads on catalyzed filters in DPF. Transient and detailed flow and thermal simulations are necessary in this field. To assess the importance of time dependent phenomena, typical cone-type configuration such as an underbody DPF is selected for steady and transient analysis. User defined functions of FLUENT by sinusoidal inlet velocities are written and integrated with main solver for realistic simulation. Also, 4-cylinder and 6-cylinder engines for 3,000 L class are considered for the dynamic exhaust effect of engine type. Key parameters to understanding of catalyst performance and durability issues such as flow uniformity index and peak velocity are investigated. Also, pressure drop for engine power are considered. From the simulation results for three different cases, proper approach is recommended.

A numerical study on the effects of the asymmetric cusp magnetic field in 8 inch silicon single crystal growth by Czochralski method (초크랄스키법에 의한 8인치 실리콘 단결정 성장시 비대칭 커스프자장의 영향에 관한 연구)

  • 이승철;정형태;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • A numerical study was conducted on the effects of the cusp magnetic field in 8" silicon single crystal grwoth by Czochralski method. For a damping effects simulation by magnetic field, low reynolds number ${\kappa} - {\varepsilon}$ model was adopted. Symmetrci cusp magnetic field has a effect of damping streamline crystal, is lowerd with the increasing cusp magnetic field intensity. The uniformity of the oxygen concentration was improved. The asymmetirc cusp magnetic field increased the oxygen concentration however, oxygen concentration distribution in the radial direction was remained uniform. Suitable combination of symmetric and asymmetric cusp magnetic fields could give uniform and low oxygen concentration in the axial direction.tion.

  • PDF

Design of Serpentine Flow-field Stimulating Under-rib Convection for Improving the Water Discharge Performance in Polymer Electrolyte fuel cells (고분자전해질 연료전지의 물 배출 성능 향상을 위한 촉매층 공급 대류 촉진 사행성 유동장 설계)

  • Choi, Kap-Seung;Bae, Byeong-Cheol;Park, Ki-Won;Kim, Hyung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.74-82
    • /
    • 2012
  • Proton exchange membrane fuel cell performance is changed by the complicated physical phenomenon. In this study, water discharge performance of proton exchange membrane fuel cell were performed numerically to compare serpentine channel flow fields of 5-pass 4-turn serpentine and 25 $cm^2$ reaction surface between with and without sub-channel at the rib. Through the supplement of sub channel flow field, it is shown from the results that water removal characteristic inside channel improves because the flow direction of under-rib convection is changed into the sub channel. Reacting gases supplied from entrance disperse into sub channel flow field and electrochemical reaction occurs uniformly over the reaction surface. The results obtained that total current density distributions become uniform because residence time of reacting gases traveling to sub-channel flow field is longer than to main channel.

Numerical Analysis of the High-Subsonic Cavity Flows over a Curved Wall (곡면 벽을 지나는 고아음속 공동 유동에 관한 수치해석적 연구)

  • Ye, A Ran;Das, Rajarshi;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Most of the work has been done till now focused on flows over wall mounted cavities in a straight wall where the incoming flow is uniform. However, the investigation on such kind of flow over a cavity mounted on the curved walls has been seldom reported in the existing literatures. In the present study, the numerical analysis was performed to investigate the cavity flow mounted on the curved walls. The effects of wall shape, the curvature radius and the flow Mach number, were investigated for high-subsonic flows. The results show that the static pressure of cavity floor increases as the L/R increases. This effect is found to be more significant when the flow Mach number is higher. The cavity drag for the curved walls are higher as compared with that of straight wall.

The Third National Congress on Fluids Engineering: Thermal design for the vertical type oven of soldering process. (반도체 공정용 수직로 설계를 위한 열유동 제어.)

  • Jeong, Won-Jung;Kwon, Hyun-Goo;Cho, Hyung-Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.561-564
    • /
    • 2006
  • Because of new requirements related to the employment of SMT(Surface Mounting Technology) manufacturing and the diversity of components on high density PCB(printed circuit boards), Thermal control of the reflow process is required in oder to achieve acceptable yields and reliability of SMT assemblies. Accurate control of the temperature distribution during the reflow process is one of the major requirements, especially in lead-free assembly. This study has been performed for reflow process using the commercial CFD tool(Fluent) for predicting flow and temperature distributions. There was flow recirculation region that had a weak point in the temperature uniformity. Porous plate was installed to prevent and minimize flow recirculation region for acquiring uniform temperature in oven. This paper provided design concept from CFD results of the steady state temperature distribution and flow field inside a reflow oven.

  • PDF

Design of Large 2-Axis Magnetic Fields Driving Apparatus for In Vivo Experiments (생체실험용 대형 2축 자기장 발생장치의 설계)

  • 성기연;김윤명
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.277-281
    • /
    • 2000
  • 본 논문에서 생체실험용 대형 2축 자기장 발생장치를 설계하였다. 생체실험 대상이 유동적이지 않고 홀더(holder)내에 고정될 경우 이는 방향성(orientation)의 논란이 불가피하며 이 영향을 줄이기 위해 각 축에 4개씩 총 8개의 코일을 사용하여 2축 4중코일 구조로 장치를 설계하였다. 원하는 특정 자기장에 대한 권선수 및 전류치를 결정하기 위해 정육면체 구조의 자기장 발생장치를 원통형으로 근사화시켜 간소하게 수식을 유도하였으며 각 코일의 최적위치 및 최적 권선비는 별도의 최적화 시뮬레이션을 통하여 수치를 추출하였다. 이렇게 얻어진 수치들을 MATLAB으로 제작한 시뮬레이터에 적용하여 설계 조건과 동일하게 모델링한 발생장치 주변에서의 자기장 분포를 시뮬레이션 해보았으며, 각 축에서의 균일도를 평가하여 균인 자기장 분포영역 또는 사용가능영역을 도출하였다. 장치해석 결과, 임의의 기준 자기장에 대해 약 5%의 오차범위를 인정할 경우, 최소 60% 이상의 사용가능영역을 확보할 수 있었으며, 이 영역 내에서는 고도의 균일 자기장이 분포함을 확인할 수 있었다.

  • PDF

AXISYMMETRIC STAGNATION FLOW NEAR A PLANE WALL COATED WITH A MAGNETIC FLUID OF UNIFORM THICKNESS (균일 두께로 자성유체가 피막된 평면 벽 주의의 축대칭 정체 유동)

  • Ko, Hyung-Jong;Kim, Kyoung-Hoon;Kim, Se-Woong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.39-44
    • /
    • 2007
  • A similarity solution of the Navier-Stokes equation for the axisymmetric stagnation flow near a plane wall coated with a magnetic fluid of uniform thickness is constructed. The shape functions representing the flow in two (magnetic and normal) fluid layer are determined from a third order boundary value problem, which is solved by the Runge-Kutta method with two shooting parameters. Features of the flow including streamline pattern and interface velocity are investigated for the varying values of density ratio, viscosity ratio, and Reynolds number. The results for the interface and wall shear stress, boundary layer and displacement thickness are also presented.

  • PDF

NUMERICAL OPTIMIZATION OF TEMPERATURE DISTRIBUTION IN HRSG SYSTEM USING INLET GUIDE VANE (전치 가이드 베인 설치에 따른 열회수 보일러 입구 온도 최적화)

  • Lee, Soo-Yoon;Ahn, Joon;Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.148-154
    • /
    • 2008
  • Diverging channel from gas burner exit to the inlet section of Heat Recovery Steam Generator (HRSG) has been re-designed for 1 MW system. To improve the uniformity in velocity and temperature distribution of existing design(Case A and B) of 300 kW HRSG system, two additional test geometries have been chosen for the numerical simulation. At first, gas burner exit section has been centered to the inlet section of boiler(Case C) and uniformity has been improved considerably. Secondly, the diverging channel length can be further reduced for compact geometry with new guide vane design (Case D and E). Proposed design shows overall improvement in uniformity in velocity and temperature distribution compared to existing one.

  • PDF

NUMERICAL OPTIMIZATION OF TEMPERATURE DISTRIBUTION IN HRSG SYSTEM USING INLET GUIDE VANE (전치 가이드 베인 설치에 따른 열회수 보일러 입구 온도 최적화)

  • Lee, Soo-Yoon;Ahn, Joon;Shin, Seung-Won
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • Diverging channel from gas engine exit to the inlet section of Heat Recovery Steam Generator (HRSG) has been re-designed for 1 MW system. To improve the uniformity in velocity and temperature distribution of existing design(Case A and B), two additional test geometries have been chosen for the numerical simulation. At first, gas burner exit section has been centered to the inlet section of the boiler(Case C) and uniformity in velocity and temperature distribution has been improved considerably. Secondly, the diverging channel length can be further reduced to compact geometry with new guide vane design (Case D and E). Proposed design shows overall improvement in uniformity in velocity and temperature distribution compared to existing one.

Numerical Simulation of Duct Flow about Shape and Arrangement of Inlet Guide Vane to Increase the Temperature Uniformity (전치 가이드 베인 배치 및 형상에 따른 보일러 입구 온도분포의 수치해석 연구)

  • Lee, Su-Yun;Shin, Seung-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1172-1177
    • /
    • 2008
  • Diverging channel from gas burner exit to the inlet section of Heat Recovery Steam Generator (HRSG) has been re-designed for 1 MW steam supply and power generation system. Three different test geometries have been chosen for the numerical simulation. The existing design for 300 kW HRSG system (CASE B) has been improved by geometry and position changes of inlet guide vanes along with gas velocity entrance angle at the diverging channel inlet (CASE C). Both cases has been compared with the case where hot combustion gas is directly injected without any guide vanes (CASE A). Improved design shows overall uniform velocity and temperature distribution compared to existing design.

  • PDF