• Title/Summary/Keyword: 유동장 해석

Search Result 1,066, Processing Time 0.032 seconds

The Study on the Effect of Elevator Movement on the Pressure Difference between Vestibule and Living room in High-rise Buildings (초고층 건축물에서 엘리베이터 구동이 부속실과 화재실 간 차압형성에 미치는 영향연구)

  • Park, Younggi;Hong, Kibea;Ryou, Hong Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.85-91
    • /
    • 2018
  • Recently, there have been a lot of casualties due to fires in high-rise buildings. The toxic gases and smokes generated by fires in high-rise buildings spread rapidly through the elevator shaft and stairwell, due to the stack effect, and can cause critical casualties. To reduce the number of casualties, smoke control systems have been introduced. Smoke control systems play an essential role in preventing the spread of smoke in high-rise buildings and securing the evacuation route. Also, in high-rise buildings, evacuation by an elevator is considered to be indispensable. However, the pressure field in the shaft is strongly disturbed when the elevator is moving and this can affect the performance of the smoke control system. Therefore, in this study, we experimentally and numerically analyzed the effect of elevator movement on the pressure difference between the vestibule and living room by building a model using the sandwich pressurization method based on the performance based design. To consider the leakage areas in high-rise buildings, e.g. the windows, fire door and elevator, the National Fire Safety Codes and area ratio were used. The elevator speed in the model building was varied between 20 m/s and 100 m/s corresponding to a real elevator speed of 7 m/s~17 m/s. As a result, the relationship between the pressure difference and elevator speed was found to be ${\Delta}P=40{\cdot}{\exp}$(-Ves /-104.7)-23.735. This result can be used to take into consideration the effect of elevator movement when designing smoke control systems.

Effects of Double-diffusive Convection on the Mass Transport of Copper Ions in a Horizontal Porous Layer (수평 다공성유체층에서 이온의 물질전달에 대한 이중확산대류 효과)

  • Yoon Do-Young;Kim Min Chan;Choi Chang Kyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.98-105
    • /
    • 1999
  • In the present study, buoyant force and its stabilizing effects in an electrostatic field were examined systematically in order to reduce the effect of natural convection with thermal stratification in a horizontal fluid-saturated porous layer. The correlation of ionic mass transport induced by double-diffusive convection in a horizontal porous layer has been derived theoretically. And the theoretical model was examined by electrochemical experiments. The theoretical correlation for mass transport which is satisfying Forchheimer's flow equation and based on the micro-turbulence model is derived as a function of soltual Darcy-Rayleigh number, thermal Darcy-Rayleigh number and Lewis number. In the experiment, the mass transport of copper ions in $CuSO_4-H_2SO_4$ solution is measured by electrochemical technique. By assembling theoretical correlation and experimental results, the mass transport correlation induced by double-diffusive convection is proposed as $$Sh=\frac{0.03054(Rs_D-LeRa_D)^{1/2}}{1-3.8788(Rs_D-LeRa_D)^{-1/10}}$$ The present correlation looks flirty reasonable with comparing experimental results, and very promising for the applications of its prototype into various systems involving heat transfer as well as mass transfer, in order to control the effects of natural convection effectively.

Feasibility Calculation of FaSTMECH for 2D Velocity Distribution Simulation in Meandering Channel (사행하천의 2차원 유속분포 모의를 위한 FaSTMECH 모형의 적용성 검토)

  • Son, Geunsoo;You, Hojun;Kim, Dongsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1753-1764
    • /
    • 2014
  • Numerical flow simulation models in the riverine environments have been widely utilized for analyzing flow dynamics in various degrees in researches and practical applications. However, most of the simulated results have been validated based on the data from indoor experimental models or very limited in-situ measurements. Therefore, it has been required to more accurately validate the performance of the numerical models in terms of the detailed field observations. In particular, it was also hard to validate the performances of the existing numerical models in the real meandered river channels that encompass more sophisticated flow and geometric structures. Recently, advancements of the modern flow measuring instrumentations such as acoustic Doppler current profilers (ADCPs) enabled us to efficiently acquire the detailed flow field in the broad range of river channels, thus that it became to be possible to accurately validate any numerical models with the field observations. In this study, based on the detailed flow measurements in a actual meandered river channel using ADCP, we validated FaSTMECH model in iRIC in terms of water surface elevation, which is relatively new but began to get highlighted in the research areas. As the validation site, a meandering channel in River Experiment Center of KICT was chosen, which has 6.5 m of width, 0.38m of flow depth, 1.54 m3/s of flow discharge, 0.61 m/s of mean flow velocity, and 1.2 of sinuosity. As results, whereas the FaSTMECH precisely simulated water surface elevation, simulated velocity field in the bend did not match well with ADCP dataset.

Modern Vision in the 18~19th Century Garden Arts - The Picturesque Aesthetics and Humphry Repton's Visual Representation - (18~19세기 정원 예술에서 현대적 시각성의 등장과 반영 - 픽처레스크 미학과 험프리 렙턴의 시각 매체를 중심으로 -)

  • Lee, Myeong-Jun;Pae, Jeong-Hann
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.2
    • /
    • pp.30-39
    • /
    • 2015
  • The English Landscape garden and picturesque aesthetics, which was in fashion during the 18th to early 19th century in England, has been accused of making people see the actual garden in terms of a static landscape painting without a synesthetic engagement in nature. As new optic devices such as diorama, panorama, photography, and cinematography were invented, ways of seeing nature transitioned from a perspective vision to a panoramic, that is, modern one. This study intends to uncover signs of this kind of modern vision in the picturesque aesthetics and visual representation of landscape gardener Humphry Repton. German garden theorist Christian Cay Lorenz Hirschfeld contended that the English landscape garden was a new style of designing landscape that followed the principle of the serpentine line, which produced movement in sightlines; thus, he considered garden art as a superior art form among all other genres. The signs of visual motion appear in Repton's sketches of "Red Books". Firstly, he designed systemic routes in his clients' properties by considering different types of movements between walks and drives. Secondly, he often used the visual effects of panoramic views for his sketches in order to allow his clients to experience the human visual field. Lastly, he constructed sequences of sketches in order to provide his clients with an illusion of movement; in other words, Repton's sketches functioned as potential visual media to produce the duration of time in a visual experience. Thus, the garden aesthetics of the time reflected the contemporary visual culture, that is to say, a panoramic vision pertaining to visual motion.

Field Scale Study for Energy Efficiency Improvement of Crematory System by the Shape Optimization of Combustion Chamber (화장로 형상 최적화를 통한 에너지효율개선을 위한 실증연구)

  • Won, Yong-Tae;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.546-555
    • /
    • 2019
  • The purpose of this study was to improve the performance of the bogie-type crematory, which is the mainstream of domestic crematory equipment. A field scale technology was investigated via increasing the volume by changing the shape of the furnace and reducing the cremation time and saving the energy usage through the optimization of burner combustion control. First, the optimized structural design through thermal flow analysis increases the volume of the main combustion chamber by about 70%, which increases the residence time of the combustion flue gas. A designed pilot crematory was then installed and the combustion behavior was tested under various operating conditions and the optimum operating plan was derived from for each furnace shape. Based on the results, the practically applicable crematory was designed and installed at Y crematorium in the P City. Optimal combustion conditions could be derived through operating the demonstration crematory furnace. The crematory time and fuel consumption could be minimized by increasing the energy efficiency by increasing the residence time of high temperature combustion flue gas. In other words, the crematory time and fuel consumption were 38 min and $21.8Nm^3$, respectively which were shortened by 44.1 and 54.4% lower than that of the existing crematory, respectively.

The Phenomenological Comparison between Results from Single-hole and Cross-hole Hydraulic Test (균열암반 매질 내 단공 및 공간 간섭 시험에 대한 현상적 비교)

  • Kim, Tae-Hee;Kim, Kue-Young;Oh, Jun-Ho;Hwang, Se-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.39-53
    • /
    • 2007
  • Generally, fractured medium can be described with some key parameters, such as hydraulic conductivities or random field of hydraulic conductivities (continuum model), spatial and statistical distribution of permeable fractures (discrete fracture network model). Investigating the practical applicability of the well-known conceptual models for the description of groundwater flow in fractured media, various types of hydraulic tests were applied to studies on the highly fractured media in Geumsan, Korea. Results from single-hole packer test show that the horizontal hydraulic conductivities in the permeable media are between $7.67{\times}10^{-10}{\sim}3.16{\times}10^{-6}$ m/sec, with $7.70{\times}10^{-7}$ m/sec arithmetic mean and $2.16{\times}10^{-7}$ m/sec geometric mean. Total number of test interval is 110 at 8 holes. The number of completely impermeable interval is 9, and the low permeable interval - below $1.0{\times}10^{-8}$ m/sec is 14. In other words, most of test intervals are permeable. The vertical distribution of hydraulic conductivities shows apparently the good correlation with the results of flowmeter test. But the results from the cross-hole test show some different features. The results from the cross-hole test are highly related to the connectivity and/or the binary properties of fractured media; permeable and impermeable. From the viewpoint of the connection, the application of the general stochastic approach with a single continuum model may not be appropriate even in the moderately or highly permeable fractured medium. Then, further studies on the investigation method and the analysis procedures should be required for the reasonable and practical design of the conceptual model, with which the binary properties, including permeable/impermeable features, can be described.