• Title/Summary/Keyword: 유동장

Search Result 2,072, Processing Time 0.028 seconds

Thermal and Flow Characteristics of Fluid with Fuel Type and Equivalence Ratio in Flame Spray Process (연료 종류 및 당량비에 따른 Flame Spray 화염장의 열-유동 특성 연구)

  • Lee, Jae Bin;Kim, Dae Yun;Shin, Dong Hwan;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.202-208
    • /
    • 2013
  • The present study aims to investigate the flow characteristics with respect to fuel type and equivalence ratio in the flame spray coating process. The flame spray flow is characterized by much complex phenomena including combustion, turbulent flows, and combined heat transfer. The present study numerically simulated the flam spray process and examined the gas dynamics involving combustion, gas temperature and velocity distributions in flame spray process by using commercial computational fluid dynamics (CFD) code of FLUENT (ver. 13.0). In particular, we studied the effect of fuel type and equivalence ratio on thermal and flow characteristics which could substantially affect the coating performance. From the results, it was found that the gas temperature distributions were varied with different fuels because of reaction times were different according to the fuel type. The equivalence ratio also could change the spatial flame distribution and the characteristics of coated layer on the substrate.

Flow Stress and Deformation Behavior of Zr-based Bulk Metallic Glass Composite in Supercooled Liquid Region (Zr계 비정질 복상 합금의 과냉 액상 영역에서의 유동 음력과 변형거동)

  • Jun, H.J.;Lee, K.S.;Chang, Y.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.417-420
    • /
    • 2006
  • The composition and structure of dendrite phase within $Zr_{76.11}Ti_{4.20}Cu_{4.51}Ni_{3.16}Be_{1.49}Nb_{10.53}$ bulk metallic glass (BMG) were confirmed by using an EPMA, XRD and TEM, respectively. The chief elements of dendrite phase were Zr-Ti-Nb and had a BCC structure. The thermal properties of this BMG have been then subsequently investigated by using a differential scanning calorimeter (DSC). The glass transition and crystallization onset temperatures were determined as $339.7^{\circ}C$ and $375.8^{\circ}C$ for this alloy, respectively. Mechanical properties have also been examined by conducting a series of uniaxial compression tests at various temperatures within supercooled liquid region under the strain rates between $10^{-4}/s$ and $3{\times}10^{-2}/s$. The deformation behavior of BMG composite within supercooled liquid region is similar to one of Vit-1 exhibiting amorphous single phase alloy. The flow stresses of BMG composite, however, are entirely higher than those of Vit-1 because dendrite phases are interfere with moving of atoms.

  • PDF

Analysis of Local Wind in Busan Metropolitan Area According to Wind Sector Division - Part II : Detailed Wind Information Using A Local-Scale Atmospheric Circulation Model - (바람권역 구분을 통한 부산지역 국지바람 분석 - Part II : 국지 대기유동장 수치모델을 이용한 상세 바람정보 -)

  • Jung, Woo-Sik;Lee, Hwa-Woon;Leem, Heon-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.103-119
    • /
    • 2007
  • We have analysed the observed surface and vertical meteorological data to get atmospheric information over the Busan metropolitan area. For this, we have selected 10 days in all season such as spring, summer I(Jangma season), summer II(hot season), autumn and winter. The result which have performed cluster analysis using atmospheric data represented that these days are included to most frequently appeared synoptic cluster. We have simulated wind field around Busan metropolitan area which is assigned as $1km^2$ using RAMS. The calculated air temperature and the wind speed was similar to the observed the that, and the trends of daily variation showed good agreement. RMSE and IOA also showed reliable value. These results indicated the RAMS is able to simulate and predict detailed atmospheric phenomenon.

Velocity and Spray Characteristics under Swirl Flows in a Model Combustor (모델연소기 선회유동장에서의 속도 및 분무특성)

  • Bae, C.S.;Lee, D.H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.42-50
    • /
    • 1998
  • The effect of swirl flows un the fuel spray characteristics were investigated for various swillers in a model combustor. The interaction between the flow field and fuel spray in the main combustion tone made by frontal devices including fuel injection nozzles and swirlers. which were characterized by flow velocities, fuel droplet sizes and their distributions which were measured by APV(Adaptive Phase/Doppler Velocimetry) under atmospheric condition at 320cc/min kerosine fuel flow and 0.04kg/sec air supply. A dual swirler with circumferential two-stage swirl vanes of $40^{\circ}\;and\;45^{\circ}$ vanes in different directions and two single-stage swillers of $40^{\circ}$ vanes with 12 and 16 vanes were tested. It was found that the dual swirler has the largest recirculating zone with highest reverse flow velocity. The strongest swirl flow was found at the boundary of recirculation zone. Small fuel droplets were observed in the main axial stream and inside the recirculation zone when swirling flow field were generated by the frontal devices. These findings could give the tips on the optimal design of frontal devices to realize low emissions in gas turbine combustion.

  • PDF

A PIV Measurement on Flow Characteristics of Intakes within a Sump in a Pump Station (펌프장의 흡입수조내 흡입관의 유동특성에 관한 PIV 측정)

  • Lee, Yeong-Ho;Kim, Yu-Taek;Kim, Jeong-Hwan;Choe, Jong-Ung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.209-215
    • /
    • 2001
  • The head-capacity curves for pumps developed by the pump manufacturer are based on tests of a single pump operating in a semi-infinite pool with no nearby walls or floors and no stray currents, Hence, flow into the Pump suction is symmetrical with no vortices or swirling. Pump station designers rely on these curves to define the operating conditions for the pump selected. But various constraints such as size, cost, and limitations on storage time require walls, floors, and pump intakes to be close proximity to each other. From this background, the authors are carrying out a systematic study on the flow characteristics of intakes within a sump found in pump stations. Model pump intake basin is designed and PIV is adopted as a measuring tool to capture the instantaneous flow patterns. Special attention is paid to investigate the flow patterns near the free surface, side-wall and back-wall due to different clearances from back-wall to vertical in take pipe. Moreover, the locations and vorticities of the various types of vortices that were found in the examinations are discussed.

  • PDF

A Study on the Drag Reduction by Shear-thinning Fluid in Turbulent Flow Fields (난류유동장에서 Shear - thinning 유체에 의한 마찰저항 감소에 관한 연구)

  • 차경옥;김재근;오율권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.126-135
    • /
    • 1997
  • Drag reduction in polymer solutions is the phenomenon where by extremely dilute solutions of high molecular weight polymers exhibit frictional resistance to flow much lower than the pure solvent. This effect, largely unexplained as yet, has attracted the attention of polymer scientists and fluid flow specialists. Although applications are beginning to appear, the principle interest to data has been in attempting to relate the effect to the fluid mechanics of turbulent flow. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, and pool and boiling flow. But the research on drag reduction in two phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction produced by polymer addition in the single phase and two phase flow system. The objectives of the proposed investigation are primarily in identifying and developing high performance polymer additives for fluid transportations with the benefits of turbulent drag. Also we want to is to evaluate the drag reduction in horizontal flow by measuring pressure drop and mean velocity. Experimental results show higher drag reduction using co - polymer(A611P) then using polyacrylamide (PAAM) and faster degradation using PAAM than using A611P under the same superficial velocity.

  • PDF

An Experimental Study of Turbulent Uniform Shear Flow in a Nearly Two-Dimensional $90^{\circ}$ Curved Duct (II) - Turbulent Flow Field- (2차원 $90^{\circ}$ 곡관에서 균일전단류의 특성에 대한 실험적 연구 (2) -난류유동장-)

  • 임효재;성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.846-857
    • /
    • 1995
  • An experimental study is made of turbulent shear flows in a nearly two-dimensional 90.deg. curved duct by using the hot-wire anemometer. The Reynolds normal and shear stresses, triple velocity products, integral length scales, Taylor micro length scales and dissipation length scales are measured and analyzed. For a positive shear at the inlet, the afore-mentioned turbulence quantities are all suppressed. However, when the inlet shear flow is negative, they are augmented, i.e., the convex curvature suppresses the turbulence whereas the concave curvature augments it. It is found that the curvature effects are rather sensitive to the triple velocity products than the Reynolds stresses. The evolution of turbulence under the curvature with the different shear conditions is well described by the modified curvature parameter S' and the non-dimensional development time ${\tau}$.'

A Study on the Combustion Characteristic of the Methanol Fuel in a Turbulence Mixture (유동분위기에서 메탄올의 연소특성에 관한 연구)

  • 이중순;이태원;정성식;하종률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.2022-2029
    • /
    • 1995
  • The experiment was performed by using the condenser discharge ignition device in a constant volume combustion chamber for high pressure, equivalent to the TDC of spark ignition engine, which makes the forced turbulent field possible. The conclusions obtained under various initial pressures, initial temperatures, and turbulent conditions of the methanol-air mixture are as follows : As initial pressure, initial temperature of the mixture, and the ignition energy increase, the inflammability limit expands, but the lean inflammability limit decreases as turbulence intensity increases. Combustion duration is shorter in the case of the lower initial pressure, the higher initial temperature, an equivalence ratio of 1.1-1.2, and even though turbulence intensity increases up to optimum value. Maximum combustion pressure increases in turbulent ambience under the same mixture condition, only in the case each optimum turbulence intensity exists under every condition. As the turbulence intensity increases .tau.$_{10}$ proportion increases while the .tau.$_{pr}$ proportion decreases....

Numerical analysis of the magnetic fluid velocity and pressure distribution according to the various magnetic field (여러가지 자기장 배치 기법에 따른 자성유체 속도 및 압력 분포에 관한 수치해석적 연구)

  • Song, Joon-Ho;Lee, Yuk-Hyung;Bae, Hyung-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.31-37
    • /
    • 2008
  • In this paper, we analyzed the dynamic behavior of magnetic fluid in a circular pipe with multiple permanent magnets. Magnetic fluid react on magnetic field against the normal fluid. In other words, magnetic fluid flow has the electromagnetism and fluid mechanics. So magnetic fluids has studied about the fluids properties and experiment. In this paper we studied the magnetic fluids velocity and pressure distribution for the novel type actuator. Because the velocity and pressure distribution is the important element of the magnetic fluids flow. First, we analyzed the Maxwell equation for the multiple permanent magnet and then concluded the governing equations for the magnetic fluid flow using the equation of Navier-Stokes. And, we simulated the dynamic behavior of magnetic fluid flow using the FEM(Finite Element Method). And we illustrated the relation between magnetic field and dynamic behavior of magnetic fluid flow.

  • PDF

Effect of Internal Flow inside Recirculation Chamber Nozzle for Automative Head Lamp on Cleaning Spray (자동차 헤드램프 세척용 재순환 챔버 노즐의 내부유동이 분무장에 미치는 영향)

  • Shin, J.H.;Lee, I.C.;Kang, Y.S.;Kim, J.H.;Koo, J.S.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.90-96
    • /
    • 2011
  • Atomized liquid jets from the washing nozzle which configured with recirculation chamber for cleaning hot-zone area are accelerated and impinged on the head lamp surface. Cleaning efficiency of head lamp can be increased with injecting washing fluids into the hot-zone area. Experimental and numerical studies with various design parameters were executed to reveal the relations between internal geometry and internal flow in the washing nozzle. Spray structures were fitted with each of the head lamp surfaces and spray nozzles were optimized to the spray pattern. The recirculation chamber induces a recirculation flow and can be decreased the pressures perturbation inside the chamber. Orifice determines the mass flow rate. When the diameter of orifice is excessively large, it showed an unstable spray pattern. As a nozzle exit angle increases, density distributions are separated with two section. Also, as a protrusion length of nozzle exit increases, spray patterns are spread into a large area and density distributions showed unstable trend.