• Title/Summary/Keyword: 유동깊이

Search Result 151, Processing Time 0.022 seconds

On the Viscous Flow Around Breaking Waves Generated by a Submerged Cylinder(Part 3 : Survey of Flow Field Using PIV Technique) (몰수실린더에 의하여 생성되는 쇄파주위 점성유동의 고찰(제3부 : PIV를 이용한 순간유동장 해석))

  • B.S. Hyun;Y.H. Shin;K.S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.38-45
    • /
    • 2000
  • A breaking-wave caused by a cylinder moving under the free-surface is studied, which is designed to unveil the interaction between breaker and cylinder using PIV at CWC. The detailed structures of the vortical flow is obtained from the velocity field measured by PIV technique. The vorticity distribution behind the breaker and originated from the breaker. It has been obvious that the vortices from breaker greatly affect the whole wake field at S/D=1. Certainly PIV was confirmed to be a very versatile means to investigate the complex flow fields such as breaking wave.

  • PDF

Stochastic Model Comparison for the Breakup and Atomization of a Liquid Jet using LES (LES 해석에서 액체제트의 분열에 대한 확률론적 분열 모델링 비교)

  • Yoo, YoungLin;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.447-454
    • /
    • 2017
  • A three-dimensional two-phase large eddy simulation(LES) has been conducted to investigate the breakup and atomization of liquid jets such as a diesel jet in parallel flow and water jet in cross flow. Gas-liquid two-phase flow was solved by a combined model of Eulerian for gas flow and Lagrangian for a liquid jet. Two stochastic breakup models were implemented to simulate the liquid column and droplet breakup process. The penetration depth and SMD(Sauter Mean Diameter) were analyzed, which was comparable with the experimental data.

Mixed Convection in an Asymmetrically Heated Vertical Parallel-Plate of Finite Length Duct Flow (비대칭적으로 가열된 유한 수직덕트내 유동의 혼합대류에 관한 연구)

  • ;B.F. Armaly
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1774-1780
    • /
    • 1991
  • 본 연구에서는 유한 길이를 갖는 수직 덕트내 공기 유동의 속도 분포를 LDV를 사용하여 측정하며 유동 특성에 미치는 가열정도, 덕트간격 및 입구소도등의 영향을 보고하고자 한다. 또한 속도분포, 온도분포 및 열전달에 미치는 부력의 영향을 수치 적으로 예측하여 그 타당성을 검증하고자 한다.

The Effects of Forming Depth and Lead Angle on Forming Force of Shear Spinning (전단스피닝에서 가공깊이와 리드각이 성형력에 미치는 영향)

  • Yeom, Sung-Ho;Nam, Kyoung-O;Park, Hyun-Jin;Hong, Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • The shear spinning has been used to produce thin angled cone of parts, with reduced forming force and enhanced mechanical and surface quality for a good finished part, compared with other method formed parts. So shear spinning technique is used widely in industrial production. Especially shear spinning and flow forming techniques are used frequently in automotive, aerial, defense industry. In this paper, finite element method analysis of shear spinning for a cone shape workpiece is carried out to study effects of forming depth and lead angle on forming force. The axial and radial forces on several forming depth and lead angle conditions are obtained.

Flow Characteristics around a Circular Cylinder according as the Depth from Free Surface (자유수면에 접한 원형실린더 주위의 유동계측)

  • Shon, Chang-Bae;Gim, Ok-Sok;Oh, Woo-Jun;Lee, Chang-Woo;Lee, Gyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.389-391
    • /
    • 2010
  • The Free surface influenced the wake behind a circular cylinder and its effects were investigated experimentally in a circulating water channe with the variation of water depth Instantaneous velocity fields were measured in this paper. the measured results has been compared with each other to investigate the flow characteristics of the circular cylinder's 2-dimensional section at $Re=1.0\times10^3$ using 2-frame grey level cross correlation PIV method. The flow around the circular cylinder with free surface affected the wake structure. especially, in case of d=1.0D, the boundary layer was measured in the whole area. The separation point and boundary layer of the circular cylinder could be controlled by the water depth.

  • PDF

An Experimental Investigation on Flame Spreading Over Liquid Fuel Surface (액체연료표면에서의 화염 확장에 관한 연구)

  • 김한석;백승욱;문정기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.271-276
    • /
    • 1989
  • Flame spreading over a hydrocarbon fuel surface has been investigated for liquid fuels such as kerosene and diesel, using thermocouple. Without forced convection, it was clearly found that the flame spreading was mainly controlled by the liquid fuel surface flow. Furthermore, the radiative heat transfer was dominant over a conductive heat transfer in kerosene. But in diesel the latter was found to be more influential than the former, when the direction of windflow was the same as that of flame spreading. The oscillation period and amplitude of the flame spreading velocity increase if the windflow is blowing in the direction of the flame spreading velocity, and decrease if the direction of windflow is blowing against the flame spreading direction.

Analysis on the Charging Process of Stratified Thermal Storage - Tanks with Variable Inlet Temperature (입구온도가 변화하는 성층축열조의 충전과정 해석)

  • Yoo, Ho-Seon
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.25-37
    • /
    • 1995
  • This paper presents an approximate analytical solution to one-dimensional model of the charging process for stratified thermal storage tanks, in which variation of the inlet temperature as well as the momemtum-induced mixing is taken into accout. The mixing is incorporated into the model as a constant-depth perfectly mixed layer above the plug flow region. Based on the superposition principle, the variable inlet temperature is approximated by a number of step functions. Temperature distributions for the thermocline corresponding to three types of interfacial condition arr successfully derived in terms of well-defined functions, so that a linear combination of them constitutes the final solution. Validity and utility of this work is examined through the comparison of the approximate solution with an exact solution available for the case of linearly increasing inlet temperature. With increasing the number of steps, the present solution asymptotically approaches to the exact one. Even with a limited number of steps, the present results favorably agree with those by the exact solution for a wide range of the mixing depth. Also, it is revealed that fewer steps are needed for meaningful predictions as the mixing. depth becomes larger.

  • PDF

LES on breakup and atomization of a liquid jet into cross turbulent flow in a rectangular duct (사각 덕트내 난류 횡단류 유동장에 분사되는 액체 제트의 분열과 미립화에 관한 LES 해석)

  • Yoo, Young-Lin;Han, Doo-Hee;Sung, Hong-Gye;Jeon, Hyuk-Soo;Park, Chul-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.290-297
    • /
    • 2016
  • A two-phase Large Eddy Simulation(LES) has been conducted to investigate breakup and atomization of a liquid jet in a cross turbulent flow in a rectangular duct. Gas-droplet two-phase flow was solved by a coupled Eulerian-Lagrangian method which tracks every individual particles. Effects of liquid breakup models, sub-grid scale models, and a order of spatial discretization was investigated. The penetration depth in cross flow was comparable with experimental data by varying breakup model and LES scheme. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

Numerical Formulation for Flow Analysis of Dredged Soil (준설토 유동해석을 위한 유한요소 수식화)

  • Shin, Hosung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.41-48
    • /
    • 2014
  • Experimental study of sedimentation and self-weight consolidation has been primary research area in dredged soil. However, good quality of the dredged soil and minimum water pollution caused by the pumping of reclaimed soil require intensive study of the flow characteristics of dredged material due to dumping. In this study, continuity and the equilibrium equations for mass flow assuming single phase was derived to simulate mass flow in dredged containment area. To optimize computation and modeling time for three dimensional geometry and boundary conditions, depth integration is applied to governing equations to consider three dimensional topography of the site. Petrov-Galerkin formulation is applied in spatial discretization of governing equations. Generalized trapezoidal rule is used for time integration, and Newton iteration process approximated the solution. DG and CDG technique were used for weighting matrix in discontinuous test function in dredged flow analysis, and numerical stability was evaluated by performed a square slump simulation. A comparative analysis for numerical methods showed that DG method applied to SU / PG formulation gives minimal pseudo oscillation and reliable numerical results.

Depth Migration for Gas Hydrate Data of the East Sea (동해 가스 하이드레이트 자료 깊이영역 구조보정)

  • Jang, Seong-Hyung;Yoo, Dong-Gun;Suh, Sang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.382-385
    • /
    • 2006
  • 한국지질자원연구원은 1997년부터 새로운 에너지 자원으로 활용 가능성을 포함하고 있는 가스 하이드레이트를 조사하기 위해 동해 일원에서 탄성파탐사를 실시하고 있다. 탄성파 반사 자료로부터 가스 하이드레이트 부존여부를 확인하는 방법은 해저면과 평행하면서 위상이 반대로 나타나는 고진폭 반사파 BSR (Bottom Simulating Reflection)과 BSR상부에서의 진폭감소, 하부에서 진폭증가와 구간속도 감소 등을 들 수 있다. 여기에서는 가스 하이드레이트 탐사자료에 대한 일반자료처리와 함께 BSR을 포함하고 있는 탄성파 반사자료에 대해 코드 병렬화된 PSPI를 이용하여 깊이영역 구조보정을 실시하였다. 고용량 탐사자료로 구성된 탄성파 반사자료에 깊이영역 구조보정을 적용하기 위해서는 고성능 컴퓨터와 병렬처리 기술이 필요하다. PSPI(Phase Shift Plus Interpolation)법은 적은 컴퓨터 계산량과 효율성 그리고 주파수 영역에서 구조적으로 병렬화가 용이한 특성을 지니고 있어 구조보정에 많이 이용되고 있다. 여기에서는 MPI(Message Passing Interface)-LAM을 이용하여 병렬코드화된 PSPI를 개발하고 인공합성모델과 동해 가스 하이드레이트 깊이영역 구조보정에 적응하였다.

  • PDF