• Title/Summary/Keyword: 유도 전동기

Search Result 2,091, Processing Time 0.019 seconds

Analysis of Abnormal Signals for Induction Motor according to Operating Status of Fire Pumps (소방펌프의 운전상태에 따른 유도전동기의 이상 신호 분석)

  • Ku, Bonhyu;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.20-27
    • /
    • 2022
  • This article aims to develop an algorithm that detects fire pump defects by analyzing the current signals of an induction motor, which are triggered by changes in the flow rate and pressure of multistage volute pumps that are used for fire services. The operational status of the pumps was categorized into three: first, normal operation; second, a defect that is caused by a change in the current value; and third, a defect occasioned by a change in current, pressure, and flow rate. When a fire pump was in normal operation, the motor's operating current was measured between 5.06 A and 6.9 A, the flow rate was estimated at 0-0.27 m3/min, and the pressure ranged from 0 to 0.47 MPa. In the event that a defect was caused by an abnormal current value in the motor, it was attributed to the pump's adherence. Furthermore, if there was no source of water, the defect was considered to have been induced by phase-loss operation, no-load operation, or run-stop operation, with the current value of each scenario being measured at > 52.8 A, < 4.13 A, > 45.15 A, and < 3.8 A, respectively, placing its overall range between 0 and 50 A. The sources of defects were detected based on an analysis of the flow rate, pressure, and current, which represent the following causes: air inflow into the casing, inadequate suction of water, and reverse-phase operation, respectively. Each cause entailed the following values: when air seeped into the casing, the pressure was measured at 0.24 MPa irrespective of changes in the flow rate; when there was inadequate suction of water, the pressure was recorded between 0 and 0.05 MPa despite changes in the flow rate; and when the power line's reverse-phase loss was the cause of the defect, the pressure was measured at 0.33 MPa for a flow rate of 0 L/min, and a higher flow rate decreased the pressure to nearly 0 MPa. The results of this study will enable engineers to develop a pump defect detection algorithm that is based on an analysis of current, and this algorithm will facilitate the execution of a program that will control a fire pump defect detection system.