• Title/Summary/Keyword: 유도결합 플라스마 방출분광법

Search Result 28, Processing Time 0.022 seconds

Determination of Metal Elements in Mongolian Chromite (몽골산 크롬철광 중의 금속성분 분석)

  • Choi, Kwang Soon;Lee, Chang Heon;Pyo, Hyung Yeol;Park, Soon Dal;Joe, Kih Soo
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.766-774
    • /
    • 2000
  • The major and trace constituents of Mongolian chromite were analyzed by ICP-AES. The dissolution procedures, mixed acid ($HClO_4+H_3PO_4$) digestion and fusion with $Na_2O_2$ flux, have been studied to dissolve the chromite. The optimum dissolution method was found to be a fusion with $Na_2O_2$ flux. The effect of large amount of Na on major and trace constituents was examined when these elements were determined by ICP-AES. There was no effect on major elements at a concentration of Na 250 mg/L solution. The emission intensity of trace constituents containing Na 1,250 mg/L decreased to 1.0-5.2% according to elements and wavelengths. The result of this method was compared with that of neutron activation analysis (NAA) to confirm the accuracy of this procedure. The results between two methods were in a good agreement within less than 5% for $Al_2O_3$, $Cr_2O_3$, MgO and -20 to 8% for Co, Mn, V, Zn, respectively.

  • PDF

Cation Exchange Separation and Determination of Ruthenium in a Simulated Spent Nuclear Fuel (모의 사용후핵연료에 함유된 루테늄의 양이온교환 분리 및 정량)

  • Suh, Moo-Yul;Sohn, Se-Chul;Lee, Chang-Heon;Choi, Kwang-Soon;Kim, Do-Yang;Park, Yeong-Jae;Park, Kyoung-Kyun;Jee, Kwang-Yong;Kim, Won-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.6
    • /
    • pp.526-532
    • /
    • 2000
  • Cation exchange separation and inductively coupled plasma atomic emission spectrometric(ICP-AES) determination of ruthenium in HCl solutions were studied to quantitatively determine ruthenium in spent nuclear fuels. Ruthenium-bearing samples were dissolved with the mixed acid solution(9 : 1 mole ratio, HCl-HNO$_3$) using an acid digestion bomb. Based on the absorption spectra and ion exchange behaviour of ruthenium in hydrochloric acid media, its possible chemical species were discussed. On a cation exchange column (0.7 ${\times}$ 8.0 cm) packed with AG 50W ${\times}$ 8(100~200 mesh) and equilibrated with 0.5 M HCl, ruthenium was eluated with 0.5 M HCl while uranium was retained on the column. The established separation method was applied to a simulated spent nuclear fuel and resulted in the recovery of 98.5% with a relative standard deviation of 0.7%.

  • PDF

Metallurgical Study of Bronze Relics Excavated from Sanoesa Temple, Chongju (청주(淸州) 사뇌사지(思惱寺址) 출토 청동유물의 금속학적 조사)

  • Kwon, H.N.;Yu, H.S.;Ahn, B.C.
    • Journal of Conservation Science
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • In 1993, many bronze artifacts were excavated from the Sanoesa Temple(思惱寺), Chongju, Chungbuk. Twelve items were selected and chemically analyzed with AA Spectrometry and ICP-Atomic Emission Spectrometry. They were also observed under the optical microscopy and SEM. According to the results from chemical analysis, production method and use, these artifacts were classified into four groups: casting, wrought and welding products, and bells. Cast products, probably used for ritual, were alloy of 70% Cu, 10% Sn and 20% Pb. They showed ${\alpha}+{\beta}$ phase as a typical microstructure of casting. The ${\delta}$ phase was rarely observed due to the small amount of Sn. These artifacts included more lead than other alloys. They showed segregation like island-shape on the lead part. Wrought products used for daily too1s. were alloy of 80% Cu and 20% Sn. Since they were consist of ${\alpha}$ phase and martensite ${\beta}$ phase, it could be presumed that they were heat-treated. The production method could be identified from twinned grains in ${\alpha}$ phase. Lead was not included in because it had a bad effect to alloy. The bells were alloyed with 85% Cu, 10% Sn, 5% Pb or 90% Cu and 10% Sn. They show the dendrite structure because they were cast and alloyed with many tin. Weldinged were alloyed with 83% Cu, 12% Sn and 5% Pb. lt showed the fine dendrite structure because of fast cooling in air.

  • PDF

The measurement of oxygen and metal ratio of simulated spent fuels by wet and dry chemical analysis (습식 및 건식법에 의한 모의 사용후핵연료의 O/M비 측정)

  • Choi, Ke Chon;Lee, Chang Heon;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.117-124
    • /
    • 2003
  • Oxygen to metal ratio has been measured by wet and dry chemical analysis to study the properties of sintered $UO_2$ pellets and $U_3O_8$ in the lithium reduction process of spent pressurized water reactor fuels. Uranium dioxide pellets simulated for the spent PWR fuels with burnup values of 20,000~60,000 MWd/MtU were prepared by mixing $UO_2$ powder and oxides of fission product elements, pelleting the powder mixture and sintering it at $1,700^{\circ}C$ under a hydrogen atmosphere. For wet chemical analysis, the simulated spent fuels were dissolved with mixed acid (10 M HCl : 8 M $HNO_3$, 2.5 : 1, v/v) using acid digestion bomb technique. The total amount of uranium and fission products added in the simulated spent fuels were measured using inductively coupled plasma atomic emission spectrometry. Weight change of the simulated fuel during its oxydation was measured by thermogravimetry and then the O/M ratio result was compared to that obtained by wet chemical analysis. Influence of $Mo_{0.4}-Ru_{0.4}-Rh_{0.1}-Pd_{0.1}$, quaternary alloy, on the determination of O/M ratio was investigated.

Dissolution of vanadium pentoxide using microwave digestion system for determination of vanadium by ICP-AES (ICP-AES로 바나듐 측정을 위한 마이크로파 용해 장치를 이용한 오산화바나듐 용해)

  • Choi, Kwang-Soon;Park, Yang-Soon;Kim, Yeon-Hee;Han, Sun-Ho;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.511-517
    • /
    • 2010
  • Dissolution procedure of vanadium pentoxide, which is widely used as a catalyst for production of sulfuric acid or an oxide reaction of the numerous organic compounds, was investigated. Reagent of vanadium pentoxide was completely dissolved in aqua regia-$H_2O_2$-HF solution, but plate type of vanadium pentoxide sample was not clearly dissolved with mixed acids. Thus, in order to establish the dissolution procedure for plate type of vanadium pentoxide, the solubility of vanadium pentoxide was investigated through comparison of acid treatment-fusion and microwave digestion methods. The optimized acid for dissolution of vanadium compound was found to be mixing acids of aqua regia, $H_2O_2$ and HF. Acid-fusion and microwave digestion methods have a similar property in the solubility of vanadium compound, but the latter was more quick and convenient procedure. The content of vanadium pentoxide was found to be $97.9{\pm}0.9%$ using an inductively coupled plasma atomic emission spectrometer after dissolution of a sample with the microwave digestion system.

Study on Dissolution Condition of Monsanto Catalyst (몬산토 촉매의 용해방법에 관한 연구)

  • Choi, Kwang Soon;Lee, Chang Heon;Pyo, Hyung Yeol;Park, Yang Soon;Joe, Kih Soo;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.317-323
    • /
    • 2001
  • Dissolution procedures of Monsanto catalyst which has been used to produce acrylronitrile by ammoxidation of propylene have been studied. Optimum dissolution condition of the catalyst supported on silica was obtained by microwave digestion system with mixed of HCl, HF and $H_2O_2$. When a safety device was activated by increased pressure in microwave vessel, Bi, Fe, Mo, Sb and U were not volatilized even though silica was volatilized as $SiF_4$. Quantification results by this method were $SiO_2$ $50.5{\pm}0.4%$, $Sb_2O_3$ $29.6{\pm}0.6%$, $UO_2$ $10.2{\pm}0.1%$, $Fe_2O_3$ $6.1{\pm}0.1%$, $MoO_3$ $0.73{\pm}0.01%$ and $Bi_2O_3$ $0.49{\pm}0.01%$ by ICP-AES and the relative error was within ${\pm}10%$ except bismuth.

  • PDF

Separation of Fission Product Elements from Synthetic Dissolver Solutions of Spent Pressurized Water Reactor Fuels by $TBP/XAD-16/HNO_3$Extraction Chromatography ($TBP/XAD-16/HNO_3$추출 크로마토그래피에 의한 모의 사용후핵연료 용해용액 중 미량 핵분열생성물 원소의 분리)

  • Lee, Chang Heon;Choi, Kwang Soon;Kim, Jung Suk;Choi, Ke Chon;Jee, Kwang Yong;Kim, Won Ho
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.4
    • /
    • pp.304-311
    • /
    • 2001
  • A study has been carried out on the extraction chromatographic separation of fission products from spent pressurized water reactor (PWR) fuels for inductively coupled plasma atomic emission spectrometric analysis. Impregnation capacity of tri-n-butyl phosphate (TBP), which is well known as an extractant in the field of uranium separation from various nuclear grade materials, on Amberlite XAD polymeric macroporous support materials was measured. Amberlite XAD-16 of which the surface area is the highest was selected as a support material because its TBP impregnation capacity was the largest in Amberlite XADs. Sorption behaviour of this TBP impregnated resin was investigated for the fission product elements using acidic solutions simulated for dissolver solutions of spent PWR fuels. The parameters affecting the performance of the separation system were optimized. The fission product elements studied excluding Pd and Ru were quantitatively recovered with the precision of less than 3.1%.

  • PDF

A study on the separation and determination of the rare earth Elements by the AG® 50W-X8 cation exchange resin (AG® 50W-X8 양이온교환수지를 이용한 희토류원소의 분리와 분석에 관한 연구)

  • Lee, Jung Sook;Choi, Beom Suk
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.272-278
    • /
    • 2008
  • Methods to separate 14 rare earth elements (REEs) and yttrium by the $AG^{(R)}$ 50W-X8 cation exchange resin, and to determine REEs by inductively coupled plasma atomic emission spectrophotometry (ICP-AES) were described. Ion exchange capacities of REEs on the resin were so high that the REEs were quantitatively ion exchanged under the flow rate of 0.3~1.0 mL/min at pH 1~6. The breakthrough capacity curve of the REEs showed that ion exchange capacities of light REEs (Cerium group) were greater than that of the heavy REEs (Yttrium group). When $200{\mu}g$ of each REEs was ion exchanged on 100 mg of resin, most of the heavy REEs were quantitatively desorbed with 10 mL of 2.0 M of $HNO_3$, while most of the light REEs with 30 mL. The method was applied to the monazite sample. The REEs could be separated from matrix, since ion exchange capacities of matrix ions of Ca, Ti, Mg, Mn were much lower than that of the REEs. However the relative standard deviations of the analytical results by the present method were not improved, as high as 1~5%.