• Title/Summary/Keyword: 유기 랜킨 사이클

Search Result 5, Processing Time 0.015 seconds

Enhancement of MCFC System Performance by Adding Bottoming Cycles (하부 사이클 추가에 의한 MCFC 시스템의 성능향상)

  • Ji, Seung-Won;Park, Sung-Ku;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.907-916
    • /
    • 2010
  • Integration of various bottoming cycles such as the gas turbine (GT) cycle, organic Rankine cycle, and oxy-fuel combustion cycle with an molten carbonate fuel cell (MCFC) power-generation system was analyzed, and the performance of the power-generation system in the three cases were compared. Parametric analysis of the three different integrated systems was carried out under conditions corresponding to the practical use and operation of MCFC, and the optimal design condition for each system was derived. The MCFC/oxy-combustion system exhibited the greatest power upgrade from the MCFC-only system, while the MCFC/GT system showed the greatest efficiency enhancement.

Thermodynamic Analysis of the Organic Rankine Cycle as a Waste Heat Recovery System of Marine Diesel Engine (유기 랜킨 사이클을 이용한 선박 주기관 폐열 회수 시스템의 열역학적 분석)

  • Jin, Jung-Kun;Lee, Ho-Ki;Park, Gun-Il;Choi, Jae-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.711-719
    • /
    • 2012
  • A thermodynamic analysis and a feasibility study on the organic Rankine cycle (ORC) as a waste heat recovery system for a marine diesel engine were carried out. The ORC and its combined cycle with the engine were simulated, and its performance was estimated theoretically using R245fa. A parametric study on the performance of the ORC system was carried out under different temperature conditions of the heat transfer loop and specification of the heat exchanger. According to the thermodynamic analysis, ~10% of the thermal efficiency of the cycle was able to be realized with the low temperature heat source below $250^{\circ}C$. The electric power output of the ORC was estimated to be about 4% of the mechanical power output of the engine, considering additional pumps for cooling water and circulation of the heat transfer medium. According to the present study, the electric power generated by the ORC is about 59%-69% of the required power, and it is possible to reduce the fuel consumption under normal seagoing conditions.

Feasibility Study and Optimization of Organic Rankine Cycle to Recover Waste Heat of Marine Diesel Engine (유기 랜킨 사이클을 이용한 선박 주기관 폐열회수 시스템의 적용성과 최적화)

  • Lee, Hoki;Lee, Dongkil;Park, Gunil
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.103-109
    • /
    • 2013
  • The Present work focuses on application of Organic Rankine Cycle - Waste heat Recovery System (ORC-WHRS) for marine diesel engine. ORC and its combined cycle with the engine were simulated and its performance was estimated theoretically under the various engine operation conditions and cooling water conditions. The working fluid, R245fa, was selected for the consideration of the heat source temperature, system efficiency and safety issues. According to the thermodynamic analysis, ~13.1% of system efficiency of the cycle was performed and it is about 4% of the mechanical power output of the considering Marine Diesel Engine. Also, addition of evaporator and pre-heater were studied to maximize output power of Organic Rankine Cycle as a waste heat recovery system of the marine diesel engine.

  • PDF

Design Performance Analysis of Micro Gas Turbine-Organic Rankine Cycle Combined System (마이크로 가스터빈과 유기매체 랜킨사이클을 결합한 복합시스템의 설계 성능해석)

  • Lee Joon Hee;Kim Tong Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.536-543
    • /
    • 2005
  • This study analyzes the design performance of a combined system of a recuperated cycle micro gas turbine (MGT) and a bottoming organic Rankine cycle (ORC) adopting refrigerant (R123) as a working fluid. In contrast to the steam bottoming Rankine cycle, the ORC optimizes the combined system efficiency at a higher evaporating pressure. The ORC recovers much greater MGT exhaust heat than the steam Rankine cycle (much lower stack temperature), resulting in a greater bottoming cycle power and thus a higher combined system efficiency. The optimum MGT pressure ratio of the combined system is very close to the optimum pressure ratio of the MGT itself. The ORC's power amounts to about $25\%$ of MGT power. For the MGT turbine inlet temperature of $950^{\circ}C$ or higher, the combined system efficiency, based on shaft power, can be higher than $45\%$.