• Title/Summary/Keyword: 유기침출수

Search Result 138, Processing Time 0.03 seconds

Behavior of Refractory Organic Matter in Leachate from Landfill Contaminated by Foot-and-mouth Disease (구제역 매몰지역 침출수에서 발생하는 난분해성 유기물질 거동)

  • Kang, Meea;An, Yaesol
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.427-434
    • /
    • 2013
  • The leachate from landfill (Andong city) contaminated by foot-and-mouth disease (FMD) contains 44%-50% hydrophilic organic matter, compared with 22%-27% in natural water bodies such as ground water, lake water, and river water. In such natural water, the organic matter content is reduced by the metabolism of microbes in the water. However, in the case of leachate-1 and -2, the concentrations of RTOC (refractory total organic carbon) and RDOC (refractory dissolved organic carbon) were higher than the initial TOC and DOC after burial. According to time elapsed after burial, the concentrations of RTOC and RDOC were decreased below the initial TOC and DOC. In the case of leachate-6 (386 days after burial), RDOC made up 91% of RTOC. This result shows that organic matter in the leachate was composed dominantly of RDOM, most of which was not removed by the metabolism of microbes. Hence, the presence and characteristics of RDOM provide a valuable indication of the effect of leachate on the quality of surface water and ground water. Such information is useful in understanding leachate environments.

Recovery of rare metals from SCR spent catalyst (탈질 폐촉매로부터 유가금속 회수)

  • Lee, Jin-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.94-94
    • /
    • 2014
  • 본 연구는 탈질용 폐 SCR 촉매로부터 유가금속인 바나듐과 텅스텐을 회수하기 위하여 고온 소다배소, 수침출, 침전 및 용매추출 실험 순으로 진행하였다. 소다배소는 $Na_2CO_3$ 첨가량 5당량, 폐촉매 평균 입자크기 $54{\mu}m$, 배소온도 $850^{\circ}C$, 배소시간 120분의 조건이 적절하였고, 소다배소 산물의 수침출 실험은 배소산물 입자크기 $-45{\mu}m$, 침출온도 $40^{\circ}C$, 침출시간 30분 및 광액밀도 10%의 조건이 적절하였다. 이와 같은 조건하에서 소다배소 및 수침출 실험을 수행한 결과, 바나듐 성분 약 46%와 텅스텐 성분 약 92%가 침출 되었다. 수침출 공정에서 얻어진 바나듐과 텅스텐이 함께 침출된 침출용액으로부터 바나듐 성분을 선택적으로 침전시키기 위하여 MgCl2를 사용하여 침전실험을 수행하였으나, 바나듐 성분이 침전될 때 텅스텐 성분이 함께 침전되어 큰 손실율을 나타내었다. 또한, 침출용액 내의 바나듐과 텅스텐 성분을 분리하기 위하여 용매추출 실험을 수행하였다. 아민계열의 추출제인 Alamine 336 및 Aliquat 336을 사용한 용매추출 실험에서 바나듐과 텅스텐 성분 모두 90% 이상 추출되었다. 이후 수행된 탈거실험에서 대부분의 역추출제에 의해 바나듐과 텅스텐은 동시에 탈거되었다. 그러나 Alamine 336을 추출제로 사용한 유기상의 탈거실험에서 NaCl 및 NH4Cl 용액을 탈거용액으로 사용하였을 경우에 바나듐과 텅스텐이 선택적으로 탈거될 수 있는 가능성을 나타내었다. 반면에 Aliquat 336을 추출제로 사용한 유기상의 탈거실험의 경우, NaOH 용액이 가장 선택적인 탈거용액임을 확인하였다.

  • PDF

Chemical Leaching of Co, Cu, Ni, Al, Fe by Organic acid from Cobalt Concentrate (코발트 정광(精鑛)으로부터 유기산(有機酸)을 이용(利用)한 Co, Cu, Ni, Al, Fe의 화학적(化學的) 침출(浸出))

  • Ahn, Jae-Woo;Ahn, Hyo-Jin;Kim, Meong-Woon
    • Resources Recycling
    • /
    • v.20 no.6
    • /
    • pp.63-70
    • /
    • 2011
  • Enviromental friendly leaching process for the recovery of cobalt and copper from the cobalt concentrate was investigated by organic acids as a leaching reagent. The experimental parameters, such as organic acid type, concentrations of leachant, time and temperature of the reaction as well as the solid to liquid ratio were tested to obtain the optinum conditions for the leaching of cobalt and copper. The results showed that citric acid was the most effective leaching reagent among the organic acids used in this experiment. About 99% of cobalt, 95% of copper and 70% of nickel was dissolved by 2.0 M of citric acid. Addition of 3.0 vol.% of hydrogen perioxide was effective to enhance the leaching efficiency and the optinum temperature was found to be about $70^{\circ}C$.

Analysis of Aliphatic Carboxylic Acids Using Ion-Exchange Chromatography: Application to Groundwater Affected by Landfill Leachates (이온-교환 크로마토그래피를 활용한 유기산 분석: 매립지 침출수의 영향을 받은 지하수에 대한 적용)

  • Cheon, Su-Hyun;Koh, Dong-Chan;Ko, Kyung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.55-64
    • /
    • 2007
  • An analytical method using ion-exchange chromatography was developed for simultaneous quantification of low-molecularweight organic acids ($C_1-C_6$ aliphatic carboxylic acids) and inorganic anions, and then applied to the assessment of ground water contaminated by leachates from a municipal solid waste landfill. Peak interferences of halide ions to organic acids were removed by pretreatment of water samples with Ag-containing cartridges. This method allowed accurate detection of low-molecular weight organic acids (i.e., formate, acetate, propionate, pyruvate, succinate, and oxalateas) low as 0.5 mg/L with a linear dynamic range up to 20 mg/L within 11 min run time along with typical inorganic anions. High level of pyruvate and low level of formate and acetate were detected in groundwater and landfill leachates using the analytical method. Pyruvate concentration in groundwater showed a significant correlation with concentrations of $Cl^-$ and $HCO_3^-$, and pyruvate levels decreased along the downgradient from the landfill, indicating the sources of pyruvate are landfill leachate.

Chemical Leaching of Cobalt and Lithium from the Cathode Active Materials of Spent Lithium-ion Batteries by Organic Acid (폐(廢)리튬이온전지(電池) 양극활물질(陽極活物質)에서 유기산(有機廳)을 이용(利用)한 코발트 및 리튬의 화학적(化學的) 침출(浸出))

  • Ahn, Jae-Woo;Ahn, Hyo-Jin
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.65-70
    • /
    • 2011
  • Environmental friendly leaching process for the recovery of cobalt and lithium from the $LiCoO_2$ was investigated by organic acids as a leaching reagent. The experimental parameters, such as organic acid type, concentrations of leachant and hydrogen peroxide, reaction time and temperature as well as the pulp density were tested to obtain the most effective conditions for the leaching of cobalt and lithium. The results showed that the latic acid was the most effective leaching reagent for cobalt and lithium among the organic acids and was reached about 99.9% of leaching percentage respectively. With the increase of the concentration of citric acid, hydrogen peroxide and temperature, the leaching rate of cobalt and lithium increased. But the increase of pulp density decreased the leaching rate of cobalt and lithium.

Leaching of Cobalt and Nickel from Metallic Mixtures by Inorganic and Organic Acid Solutions (코발트와 니켈 금속혼합물로부터 무기산 및 유기산에 의한 침출)

  • Moon, Hyun Seung;Song, Si Jeong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.53-60
    • /
    • 2021
  • Leaching experiments from single metal and metallic mixtures were conducted to develop a process for the recovery of cobalt, copper, and nickel in spent lithium ion batteries. Inorganic and organic acid solutions without oxidizing agents were employed. No copper was dissolved in the absence of an oxidizing agent in the leaching solutions. The leaching condition to completely dissolve single metal of cobalt and nickel was determined based on acid concentration, reaction temperature and time, and pulp density. The leaching condition to dissolve all of cobalt and nickel from the metallic mixtures was also obtained. Leaching of the metallic mixture with methanesulfonic acid led to selective dissolution of cobalt at low temperatures.

Membrane Screening for Kimpo Landfill Leachate Treatment (김포매립지 침출수처리를 위한 분리막의 분리특성연구)

  • 변기수;고상열;노수홍
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.64-66
    • /
    • 1995
  • 쓰레기매립지 침출수는 중금속과 난분해성 유기물질을 고농도로 함유하고 있어 기존의 생물학적 방법은 처리효율이 낮고, 화학적 산화법은 비용이 많이드는 처리하기가 어려운 폐수이다. 본 연구에서는 기존의 처리방법을 막분리공정으로의 대체가능성을 조사하기 위해 김포 수도권매립지의 침출수를 대상으로 Nanofiltration막인 MPF-34, XU-45와 역삼투막인 Desal-CA, LSY-CPA, SW-30, UOP-CA의 분리특성을 평막실험장치를 사용하여 조사하였다.

  • PDF

Organic Matter Analysis and Physicochemical Properties of Leachate from a Foot-and-Mouth Disease Landfill Site (구제역 가축 매몰지 침출수의 물리 화학적특성과 유기물질 성상분석)

  • Kang, Mee-A;Kim, Mi-Sun;Choi, Byung-Woo;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.128-134
    • /
    • 2012
  • Foot and mouth disease (FMD) is one of the most notorious and contagious viral diseases afflicting cloven-hoofed animals. In this study, the physicochemical properties of leachate from a FMD landfill site at 773-1, Waryong, Andong, Korea and the ground water from 777, Waryong, Andong, Korea, were analyzed for 1 year from December $10^{th}$ 2010 to November $17^{th}$ 2011. The leachate was collected from the FMD landfill site during March, May, July, September and November, 2011 and changes in pH, brix, water content, insoluble solids, crude proteins, crude lipids, total and reducing sugars and ash content were determined. Considering the annual profiles of temperature and rainfall at the FMD landfill site, the dramatic changes in the physicochemical properties of the leachate from March to July, and especially from May to July, such as increases in pH, and a rapid reduction of brix and organic matter, may be closely linked to the growth of microorganisms in the leachate. The sharp decreases in the concentration of biominerals, such as Mg, Ca, and Fe from 1073, 4311 and 56.2 ppm in March to 151, 78, and 0.1 ppm in November, further suggest that decreases in organic matter in the leachate result from degradation by microorganisms originating from the intestines of the livestock. Analysis of the profiles of the organic materials in the leachate revealed that the properties of the leachate were similar to those of excremental matter-derived water. These results could be applied to a number of fields for the analysis of organic matter behavior, the development of the degradation process, and risk analysis in the environment for hygiene and food industries, of leachate from FMD landfill sites.

Effect of Leachate Recirculation LFG Generation Characteristics (침출수 재순환에 따른 매립가스 변화특성 연구)

  • Won, Seung-hyun;Park, Dae-won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.19-32
    • /
    • 2018
  • This study has been carried out to analyze the effects of leachate recirculation on methane gas concentration in the Landfill. The monthly average on precipitation of the landfill area during the period from 2010 to 2016 has been recorded at 130.9 mm and the total precipitation was recorded at 73.7 mm for the month of June in 2017. And based on the Korea meterological administration data obtained, the water content has been anticipated to be at low level. And for the control environment testing on the effects of leachate recirculation, the reading has been carried out in relation to the methane gas concentration with the landfill site tested with average reading of 30.14%. Once the reading has been established 5 tones of leachate has been injected and the readings carried out respectively with the first reading recorded at 24.66% on June with subsequent readings carried out, 31.51 (6/24), 36.88% (7/1) and final reading carried out on 7/25 registered at 52.47%. Based on the leachate recirculation, the test showed increase of methanate concentrations with the concentration percentage showing between 50~65%.

The Characteristics of water Quality on MSW Landfill Leachate with variation of the Oxidation-Reduction Potential (산화·환원 전위 변화에 따른 도시폐기물 매립지 침출수의 수질 변화 특성)

  • Huh, Mock
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.127-133
    • /
    • 2001
  • It can be known that from leachate generated in the initial stage of landfill there are a lot of undecomposed orgainc materials, its sulfur component reduces to sulfide ion by sulfur reducing microorgarnisms as an anaerobic digestion proceeds, the sulfide ion makes the leachate discolor to black by forming metal sulfide sol, on condition that much more equivalent of sulfide ion than that of metal ion is present, and the metal sulfide sol can be generated to the precipitates by forming black-colored particulates. Therefore, we can confirm the important possibility for the economic and efficient treatment of leachate that it can be passivated, provided that much more equivalent of sulfide ion is present in the reaction of sulfide ion and metal ion.

  • PDF