• Title/Summary/Keyword: 유기질토

Search Result 17, Processing Time 0.023 seconds

A Study on the Effects of Biodegradation for Organic Soils (유기질토에 대한 생분해처리 효과에 관한 연구)

  • Song, Yeong-U;Park, Jun-Beom;Kim, Hyeong-Seok
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.151-162
    • /
    • 1998
  • The compressibility and the permeability of organic soil are so high that they cause many engineering problems when constructing a structure on the soil. If the organic content of the soil could be reduced by any applicable engineering technique, the engineering properties of the soils can be improved to some extent. The purpose of this study would thus be focused on how to decrease the amount of organic matters by applying aerobic biodegradation for eliminating post-construction settlement problems. To enhance the aerobic decomposition, oxygen was supplied to the soil samples prepared by the mixture of kaolinite and sawdust as organic matter. The dissolved oxygen and the organic content of the soil samples were measured, in accordance with the passage of time through the bests. As oxygen suppliers, HaOa liquid and pure oxygen gas were compared to meet the requirement of the test purposes. Newly manufactured oedometer with the diameter of 130 mm and the height of 300 mm was used for 100 days to perform the compressibility tests for the soils. Based on the results of this experiment, the oxygen gas-treated samples with nutrient settled 30% more than the samples untreated. This confirmed the efficiency of the aerobic biodegradation. $NaNO_3$ added into the soils as nutrients was proved more effective than $K_2HP0_4$. To confirm the activity of micro-organisms, sodium azide was also added to the soils.

  • PDF

Estimation of Strength Parameter of Soil-NSS Mixture by Triaxial Compression Test (삼축압축시험을 이용한 NSS 혼합토의 강도정수 평가)

  • Oh, Sewook;Lee, Gilho;Kwon, Hyekkee;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.65-71
    • /
    • 2013
  • Despite of the various merits of soil pavement, it has not been widely adapted because portland cement was conventionally used as soil stabilizer to improve the mechanical properties such strength parameters. Recently, natural soil stabilizer(NSS) were developed and virtually adopted to several case of soil pavement construction under control of heavy metal pollution compared to cement-used cases. However, the application of natural soil stabilizer is not settled yet, and empirical design have been widely adopted. In this study, therefore, the strength parameter of soil-NSS mixture was estimated by some triaxial compression tests, CU-test. From the tests, the relationship between curing period and strength parameter such as internal friction and effective cohesion was examined. As a result, effective cohesion of dredged clay and granite soil increased as curing time is increased. However, internal friction is almost same result in all soil type used in this study.

An Evaluation of Smeared Zone Due to Mandrel Penetration (맨드렐 관입에 기인하는 스미어 존의 평가)

  • 박영목
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.217-225
    • /
    • 2003
  • An experimental study was conducted to evaluate the smeared effect due to mandrel penetration into soft ground for a vertical drain installation. Laboratory tests were performed to investigate the formation of a smear zone, the variations of strength, and the consolidation characteristics in the disturbed zone using two types(CL at Yangsan site and OH at Pohang site) of soft clayey soils. The smear zone effect was evaluated focusing on mandrel shape, mandrel size, penetration speed, and ground condition. Based on laboratory test results, the diameter of the smear zone$(d_s)$ ranged from 3.08 and 3.92 times that of mandrel$(d_m)$. It was also found that the $(d_s/d_m)$ value of the circular shape of the mandrel is smaller than those of square and rectangular shapes. The value of $(d_s/d_m)$ decreased with larger mandrel size, lower penetration speed in the CL soil, and higher penetration speed in the OH soil. However, natural water content was minimally affected by $(d_s/d_m)$. Respectively, the coefficients of horizontal consolidation$(C_{hs})$ and horizontal Permeability$(K_s)$ of smear zone ranged from 0.81 to 0.87 times, and 0.73 to 0.83 times those of the undisturbed zone. Based on this study, the values of $C_{hs}, K_s$ and unconfined compressive strength$(q_{us})$ in the smear zone were the lowest at close vicinity of the mandrel and increased linearly with distance from the mandrel. Further, the $(q_{us})$ varied from 0.5 to 0.9 times that of the undisturbed zone strength.

Field Appliciability Evaluation of Eco-friendly Mixed Soil (친환경 혼합토의 현장적용성 평가)

  • Park, Kyungsik;Oh, Sewook;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.17-25
    • /
    • 2014
  • In the present study, it were performed an unconfined compression test and a field applicability test according to a mixed ratio of SS, soil type and curing period to analyze strength and deformation characteristic in order to evaluate engineering characteristics of soil mixed pavements using the eco-friendly soil stabilizer (SS). The test results revealed that SS mixed soil shows fast strength development at the initial curing time while 28-day strength amounted for 97% of the final strength. Furthermore, coarse-grained dredged sand (DS) and weathered granitic soil (WGS) have a larger ratio of deformation coefficient with respect to unconfined compressive strength than fine-grained dredged clay (DC) and organic soil (OS). Moreover, a comparison test between natural and forced drying conditions was conducted and test result showed 54% to 67% of strength degradation while having 55% to 63% of strength degradation in the freezing and thawing test result. Finally, a repeated loading test result showed that DS experiences up to 35% of strength reduction compared to initial strength under 10,000 times loading in maximum. Thus, it was validated that an appropriate amount of fine-grained sand is necessary to secure resistance capability to repeated loading.

Uplift Pressure Removal System in Underground Structure by Utilizing Geocomposite System (지오컴포지트를 이용한 양압력 제거공법)

  • Shin, Eun-Chul;Kim, Jong-In;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.61-68
    • /
    • 2006
  • Recently the large scale civil engineering projects are being implemented by reclaiming the sea or utilizing seashore and river embankment areas. The reclaimed land and utilized seashore are mostly soft ground that doesn't have sufficient bearing capacity. This soft ground consists of fine-grained soil such as clayey and silty soils or large void soil like peat or loose sand. It has high ground water table and it may cause the failure and crock of building foundation by uplift pressure and ground water leakage. In this study, the permittivity and the transmissivity were evaluated with the applied normal pressure in the laboratory. The laboratory model tests were conducted by utilizing geocomposite drainage system for draining the water out to release the uplift pressure. The soil used in the laboratory drainage test was dredged soil from the reclaimed land where uplift pressure problems can arise in soil condition. Geocomposite drainage system was installed at the bottom of apparatus and dredged soil was layered with compaction. Subsequently the water pressure was supplied from the top of specimen and the quantities of drainage and the pore water pressure were measured at each step water pressure. The results of laboratory measurements were compared with theoretical values. For the evaluation of propriety of laboratory drainage test, 2-D finite elements analysis that can analyze the distribution and the transferring of pore water pressure was conducted and compared with laboratory test results.

Environmental Characteristics of Astilboides tabularis (Hemsl.) Engl. Habitats (개병풍 자생지의 환경특성)

  • Yoon, Yeon Sun;Kim, Kyung-Ah;Yoo, Ki-Oug
    • Korean Journal of Plant Resources
    • /
    • v.28 no.1
    • /
    • pp.64-78
    • /
    • 2015
  • The environmental characteristics of Astilboides tabularis were investigated to compile basic data for conservation and restoration. Natural habitats, according to investigations, were mostly located on the slopes of mountains facing north at an altitude of 432 m to 1,413 m above sea level with angles of inclination ranging from 16 degree to 49.5 degree. A total of 246 vascular plant taxa were identified from 12 quadrats in 11 habitats. The importance value of Astilboides tabularis is 20.40%, and 6 highly ranked species such as Dryopteris crassirhizoma (4.56%), Rodgersia podophylla (3.72%), Astilbe rubra (2.81%), Carex siderosticta (2.67%), Ainsliaea acerifolia (2.65%), and Meehania urticifolia (2.46%) are considered to be an affinity with Astilboides tabularis in their habitats. Average species diversity was 1.23, dominance and evenness were found to be 0.11 and 0.86, respectively. The litter depth above the soil surface was 2 to 10 cm, and soil depth was 20.8 to 67.5 cm. The soil texture of habitats were divided three types such as loam, silt loam, and sandy loam. The soil pH was 5.63 to 7.74, and the organic matter and nitrogen contents were ranged from 8.88 to 42.55%, and 1.40 to 6.58 mg/g, respectively.

Studies on the Agricultural Use of the Water-swelling Polymer -I. Basic Experiment (수팽윤성(水膨潤性) 고분자(高分子) 화합물(化合物)의 농업적(農業的) 이용(利用)에 관(關)한 연구(硏究) -제(第) I 보(報) 기초시험(基礎試驗)을 중심(中心)으로)

  • No, Yeong-Pal;Jung, Yeun-Tae;Chung, Gun-Sik;Kim, Young-Ha
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.209-216
    • /
    • 1987
  • The experiments were carried out in lab. as well as in pots, to develop the agricultural usage of water swellable polymer, a kind of polyacrylic acid(K-sorb) synthesized by the Korea Advanced Institute of Science & Technology (KAIST) recently. The changes of soil physical properties and the influences to crops were investigated with various levels of K-sorb. When the K-sorb mixed with soils and soaked up distilled water, the volume of soils increased with the increase of soil available water contents and increase of K-sorb application levels. The rate increase of soil available water was higher in the coarse textured soils than in the fine while the swelling rate of soil volume showed adverse tendencies. A positive linear regression was observed between the contents of available soil water and levels of K-sorb. K-sorb application decreased bulk density and hardness due to the increase of porosity after soybean cultivation. The permeability in coarser textured soils such as sandy and coarse loamy families was decreased with the increase of K-sorb but in the medium textured soils it was opposite. At higher levels of K-sorb, about 0.5%, the permeability abruptly decreased due to dispersion and vertical movement in silty soils, while it was not changed in fine clayey soils but has the same trend with silty soils. In the plot of 0.3% of K-sorb application, the growth of soybean such as number of pods and stem length etc. increased and the yield also increased about 1.2-1.8 times of control. The optimum amounts of K-sorb were slightly different according to soil texture but estimated from regression curves were about 0.2% to 0.35% of soils in dry weight bases.

  • PDF