• Title/Summary/Keyword: 유기물 흡착

Search Result 299, Processing Time 0.042 seconds

Pollution of Agricultural Environment I. Adsorption of Several Herbicide on Soils and Theoretical Evaluation (농업환경(農業環境)의 오염(汚染)과 그 대책(對策) 제(第) 1 보(報) 몇가지 제초제(除草劑)에 의한 토양(土壤) 흡착(吸着)의 이론적분석(理論的分析))

  • Han, Dae-Sung;Kim, Jeong-Je;Shin, Young-Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.3 no.1
    • /
    • pp.22-29
    • /
    • 1984
  • The Freundlich-type adsorption isotherms were obtained in this study on the adsorption of linuron, bentazon, trifluralin and butachlor by soils. A strong correlation was shown between soil organic matter content and the adsorption of linuron. Soils with high organic matter content adsorbed more linuron. There was no significant correlation between the adsorption of bentazon and clay content. There was a tendency that increase in organic matter content acts against the adsorption of bentazon. Repulsive forces seemed to exist between negatively charged soil particle surfaces and betazon molecules which become weakly charged negative ions in soil solution. Organic matter content and cation exchange capacity appeared to be enhancing the adsorption of trifluralin and butachlor. Clay content was not significantly correlated with the adsorption of these herbicides. Trifluralin was adsorptive to the greatest extent, followed by linuron and butachlor, bentazon being the least.

  • PDF

토양 유기물과 산화철의 흡착 반응 및 특성

  • 고일원;김주용;김광구;김경웅
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.69-71
    • /
    • 2003
  • 토양 및 수질 유기물질과 금속 산화물사이의 상호 반응관계는 환경지구화학적으로 중요하게 다루어진다 (Sposito, 1984). 토양내 광물들의 표면은 토양 유기물질의 주요한 부분을 차지하는 휴믹물질, 즉 휴믹산과 펄빅산에 의해서 이온강도와 산도에 따라 피복하는 현상을 일으킨다. 특히, 휴믹산과 펄빅산은 토양 및 수질내 주요한 구성 유기물로 존재하며 다양한 유기화합물과 분자량을 갖으며, 중금속들의 유출에 의한 오염 환경에서 그 화학종과 이동도에 영향을 주게된다 (Thurman, 1985). (중략)

  • PDF

Screening of the Optimum Filter Media in the Constructed Wetland Systems through Phosphorus Adsorption Capacities (인의 흡착능 평가를 통한 인공습지 하수처리 시스템의 여재 선발)

  • Lee, Hong-Jae;Seo, Dong-Cheol;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.148-152
    • /
    • 2003
  • The phosphorus(P) adsorption capacities of various filter media were investigated in relation to the size and types of fitter media to screen the optimum condition. The objective of this study was to evaluate the constructed wetland longevity by improving P adsorption capacity. The maximum P adsorption capacities of filter media A($4{\sim}10\;mm$), B($2{\sim}4\;mm$) and C($0.1{\sim}2\;mm$) were 8, 10 and 22 mg/kg, respectively, showing those increased as the filter media size decreased. Among the experimental media, the optimum filter media size was $0.1{\sim}2\;mm$. When the filter Medium was supplemented with organic materials which were piled up and decayed in the constructed wetland, the P adsorption capacity was significantly enhanced Under the conditions of optimum fitter media size, the respective Maximum P adsorption capacities of filter media C when supplemented with Ca, Mg, Al and Fe were higher than that of filter media C. However the addition of Ca, Mg, Al and Fe to constructed wetland were not recommended because of the possibility of their secondary pollution. The maximum P adsorption capacity of filter media C was 22 mg/kg, but this was increased to 36 mg/kg when filter media C was supplemented with 2% oyster shell.

Effect of Membrane Materials on Membrane Fouling and Membrane Washing (막의 재질에 따른 막오염 특성 및 물리·화학적 세척의 영향)

  • Shim, Hyun-Sool;Jung, Chul-Woo;Son, Hee-Jong;Sohn, In-Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.500-505
    • /
    • 2007
  • The objectives of this research were to (1) identify the membrane fouling potential due to different fractions of NOM (2) correlate the physicochemical properties of NOM and membranes with the adsorption of humic substances on membrane (4) find out the effect of membrane physical and chemical washing according to membrane material. The static adsorption test and adsorption test showed that hydrophobic organics adsorbed much more quickly than hydrophilic organics. In case of the effect of membrane properties on the adsorption of organic fractions, the adsorption rate ratio(a) of hydrophobic membrane (0.016, 0.077) was greater than that of hydrophilic membrane (0.010, 0.033) regardless of the kind of organic fractions. This suggests that the UF membrane fouling were occurred mainly by internal pore size decreasing due to adsorption of organic into pore surface for hydrophobic membrane, and by sieving of organics and forming a gel layer on the membrane surface for hydrophilic membrane. In conclusion, the decrease in the pore volume, which was caused by the organic adsorption into the internal pore, was greater with the hydrophobic membrane than with the hydrophilic membrane. In case of the effect of membrane properties on permeate flux, the rate of flux decline for the hydrophobic membrane was significantly greater than that for the hydrophilic membrane.

Effects of soil organic matter and oxidoreductase on adsorption and desorption of herbicide oxadiazon in soils (제초제 oxadiazon의 토양 흡탈착에 미치는 유기물의 함량과 산화환원효소의 영향)

  • Lee, Wan-Seok;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.70-78
    • /
    • 1998
  • Dissipation, adsorption and desorption of oxadiazon were examined in two soils containing different amounts of soil organic matter. In addition, reactivity of oxadiazon with humic monomers was searched to clarify binding mechanism of oxadiazon to soil organic matter in the presence of a laccase of Myceliophthera thermophila. Half lives of oxadiazon were 38 days in Soil I and 45 days in Soil II. Freundlich constant, k values of fresh soils were higher than those of oxidized soils. Adsorption rates of oxadiazon were increased 17.1% in Soil I and 9.3% in Soil II in the presence of a laccase but no significant increase was observed in oxidized soils. Desorption rates of oxadiazon in fresh soils were lower than those in oxidized soils. Desorption rates of adsorbed oxadiazon in soils addes with the enzyme were not changed in oxidized soils but decreased in fresh soils. The herbicide oxadiazon alone underwent no transformation by a laccase but in the presence of catechol, guaiacol and gallic acid as humic monomer, transformation rates of it were from 20% to 24%.

  • PDF

Adsorption Characteristics of Organic Compounds on the Activated Carbon Fiber(II) (섬유상활성탄(纖維狀活性炭)에 의한 유기화합물(有機化合物)의 흡착특성(吸着特性)(II))

  • Sohn, Jin-Eon;Lee, Si-Won
    • Elastomers and Composites
    • /
    • v.24 no.2
    • /
    • pp.105-109
    • /
    • 1989
  • Liquid phase adsorption of organic compounds solution on the activated carbon fiber was measured by chromatographic method in a packed column. Adsorption equilibrium constant Ka of dextrose solution was found to be $72.5cm^3/g$ on ACF without bacteria growth, while in the bacterial ACF packed column Ka was $87.9cm^3/g$. It is suggested that for biological ACF there is a large contribution of bacterial activity to the adsorption equilibrium constant. Axial dispersion coefficient Ez was determined to be in proportional to flow rate and Pe=dpu/Ez independent or existence or bacteria.

  • PDF

The Adsorption of N-methylcarbamate Insecticides on Soils (N-methlycarbamate 계(系) 살충제의 토양중(土壤中) 흡착(吸着))

  • Kim, Jang-Eok;Hong, Jong-Uck
    • Applied Biological Chemistry
    • /
    • v.28 no.3
    • /
    • pp.124-130
    • /
    • 1985
  • Adsorption experiments of N-methylcarbamate insecticides on soils were carried out as a function of soil pH ana soil organic matter content with wet-and dry-land soils that were either oxidized or non-oxidized. The results obtained may be summarized as follows: The adsorption of N-methylcarbamate insecticides on soils was nearly leached to equilibrium after shaking for 12 hours. The adsorption of N-methylcarbamate insecticides was higher on sandy clay than sandy loam. The presence of organic matter in soil increased the adsorption of N-methrlcarbamate insecticides on soils. The mode of isothermal adsorption of N-methylcarbamate insecticides on soils was coincident with the Freundlich equation. Little effect of soil pH on the adsorption might be interpreted as that the adsorption was due to physical adsorption between N-methylcarbamate molecules and soil surface.

  • PDF

Removal of Color and non-biodegradable organic matter from biologically treated effluent by coagulation. (응집에 의한 생물학적 처리수의 색도 및 난분해성 유기물 제거)

  • Seo, Tae-Gyeong;Park, Sang-Min;Park, No-Baek;Jeon, Hang-Bae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.859-863
    • /
    • 2008
  • 축산폐수, 침출수 등의 고농도 폐수를 생물학적으로 처리할 경우 최종 방류수는 강한 색도를 띠며 고분자량의 유기물질을 다량 함유한다. 이는 생물학적으로 분해하기 어려운 유기성 복합체와 생화학적 반응에 의한 중간생성물로 색도를 띠는 천연유기물질(NOM)을 포함한다. 생물학적 처리수의 색도는 심미적인 불안감, 방류수역의 수질오염 및 공중보건상의 잠재적 위해성을 갖는다. 또한, 수자원 이용측면에서 정수처리공정에서의 약품투입량 증가와 특히, 소독부산물 생성이라는 잠재적 문제점이 뒤따른다. 따라서 이러한 문제점을 해소하기 위한 생물학적 2차 처리수의 후속처리가 요구되며, 실제로 난분해성 유기물과 색도를 제거하기 위한 흡착, 막 분리, 고급산화(AOP) 및 화학적 응집 등의 물리-화학적 공정에 대한 연구가 수행되어왔다. 특히, 화학적 응집은 무기응집제 또는 고분자중합체(Polymer)를 이용하여 콜로이드성 입자와 색도를 띠는 난분해성 유기물을 전기적 불안정화를 유도함으로서 흡착 및 응집과정을 통해 제거하는 공정으로 많은 연구자들에 의해 연구되어왔다. 그러나 난분해성 유기물과 색도제거는 대상원수의 성상과 화학적 특성 등에 따라 각각의 제거효율과 최적 운전조건이 상이하게 나타난다. 화학적 응집공정은 비교적 높은 제거효율을 보이지만, 운전 및 유지관리의 기술적 어려움, 경제적 비효율성 등으로 인하여 적용에 어려움을 겪고 있는 실정이다. 본 논문에서는 생물학적 혐기-호기성 공정에서 방류되는 축산폐수의 2차 처리수를 대상으로 화학적 응집에 의한 색도 및 난분해성 유기물의 제거거동을 고찰하였다. 대상 처리수의 $TCOD_{Cr}$ 농도는 평균 410 mg/L인 반면, $BOD_5$는 7-15 mg/L 범위로 난분해성 유기물을 다량 함유하고 있음을 알 수 있었다. 이에 황산알루미늄(Aluminium sulfate; $Al_2(SO_4){\cdot}14H_2O$)과 염화철(ferric chloride)의 무기응집제를 이용하여 자 테스트(jar test)를 수행한 결과, 동일한 응집제 주입량에서 염화철의 유기물 제거 효율이 높은 것으로 나타났다. 황산알루미늄과 염화철의 경우 각각의 응집제 주입율 5.85mM에서 89%, 7.03mM에서 97.5%의 최대 유기물 제거효율을 보여주었으며, 이 때 최종 pH는 4.0-5.6 범위이었다. 한편, 대상 원수 내의 콜로이드성 입자 또는 용존성 유기물의 작용기(functional group)는 일반적으로 음으로 하전 되어 있어 응집에 의해 잘 제거되지 않는 특성을 가지고 있다. 따라서 과량의 응집제를 주입하여 다가의 양이온성 금속염을 흡착시켜 전기적으로 중화시키고, 생성된 침전성 수화물 내에 포획 또는 여과시켜 제거하게 된다. 이 때, 금속염 수화종의 전하밀도가 응집효율에 영향을 주는 것으로 알려져 있는데, 다가의 양이온은 전기적 이중층(Double layer) 압축에 의한 불안정화를 향상시킬 수 있기 때문에다. 또한, 2가 금속염은 색도유발물질과 흡착하여 humate 또는 fulvate 등의 착화합물(complex)을 형성시켜 응집효율을 향상시킬 수 있다. 따라서 본 연구에서는 생물학적 2차 처리수의 화학적 응집처리에 있어서 알루미늄염 등의 다가이온 첨가가 응집에 미치는 영향을 관찰하고, 후속되는 플록형성 및 침전공정에 의한 제거효율을 비교, 평가함으로써 2차 처리수로부터 난분해성 유기물과 색도를 보다 효과적이고 경제적으로 제거할 수 있는 최적인자를 도출하고자 하였다.

  • PDF

Investigations of Adsorption Behaviors of Various Adsorbents Including Carbon, or TiO2 (탄소나 TiO2를 포함한 다양한 흡착제의 휘발성 유기물 흡착에 대한 연구)

  • Kim, Young-Dok
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.106-112
    • /
    • 2012
  • New equipment for quantitative and qualitative adsorption of volatile organic compound was set up, and using this equipment, adsorption behaviors of various carbob-based nanomaterials and $TiO_2$ thin films prepared by atomic layer deposition were compared. We could conclud that $TiO_2$ thin films can show higher adsorption capacity of toluene comparing to the carbon-based nanostructures due to higher affinity of the surface OH groups of $TiO_2$ towards toluene adsorption. We also demonstrate that our method allows to discriminate reversible and irreversible adsorptions at a given temperature.

Mineralization and Adsorption of $^{14}C$-Lablled Imazapyr in Soil (($^{14}C$ 표지 Imazapyr의 토양중 무기화와 흡착)

  • Kwon, Jeong-Wook;Lee, Jae-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.320-326
    • /
    • 1997
  • In order to elucidate the degradation characteristics of the herbicide imazapyr in soil, mineralization to $^{14}CO_2$and adsorption were investigated using eight types of soils with the different physico-chemical properties. The results obtained were as follows: 1. During the incubation period of 12 weeks after the treatment of imazapyr, the amounts of $^{14}CO_2$ evolved from 8 types of soils with different properties ranged from 1.5 to 4.9% of the originally applied $^{14}C$ activities. Soil C, G, and H with low pH and high organic matter showed low $^{14}CO_2$evolution, whereas soil B and D with high pH and low organic matter did high $^{14}CO_2$ evolution. 2. Time for reaching the equilibrium concentrations in the adsorption experiment of imazapyr in soils was about 3 hours at $25^{\circ}c$ in soil C, D, G, and H. Imazapyr was adsorbed in the range of 0.25${\sim}$28.32% in soils with different physico-chemical properties. Among the soil parameters, organic matter content was the most influential in imazapyr adsorption on soil. The Freundlich adsorption coefficient $(K_f)$ increased 5.5 to 25.6 times as organic matter content increased 2.0 to 21.3 times. Hence it seems that the extent to which soil organic matter contributes to imazapyr adsorption is greater than that of clay mineral. $K_f$ values for the soils tested were 0.44, 0.08, 0.65, and 2.05 in soil C, D, G, and H, respectively. In all the soils tested, $K_f$ values had a strong resemblance to K_$K_d$.

  • PDF