• Title/Summary/Keyword: 유기물 흡착

Search Result 298, Processing Time 0.025 seconds

토양 특성에 따른 Trichloroethylene (TCE:) 흡착능 비교

  • 정현정;이민희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.362-365
    • /
    • 2002
  • 토양의 물리/화학적 특성에 따른 토양의 유기오염물 흡착능 변화를 규명하기 위하여, 토양 내 clay 함량 및 유기물 함량변화, 수용액 내 TCE 농도변화에 따른 TCE 의 토양내 흡착량 변화를 측정하였다. 수용액의 pH와 실내온도는 일정하게 유지시켰으며 clay는 표면적이 다른 Ca-montmorillonite, Na-montmorillonite, kaolin을 이용하였고, 유기물질로는 활성탄을 사용하였다. 일정한 토양성분과 실제토양에 대해 수용액 내 TCE의 농도를 변화시켜 농도변화에 따른 흡착량 변화를 측정하였다. 실험결과 유기물과 점토함량의 증가에 따라 흡착량은 모두 증가하였으나 활성탄에 의한 TCE 흡착량이 점토에 비해 매우 높았으므로 유기물에 의한 TCE 흡착영향이 점토에 의한 흡착 영향보다 큰 것으로 나타났다. TCE 농도변화에 따른 흡착결과는 실제토양과 모사토양에서 모두 농도가 증가함에 따라 흡착 증가율이 증가하다가 감소하는 Langmuir isotherm 형태를 보여 주었다.

  • PDF

농약류 (1,2-dichlorobenzene, hexachlorocyclohexane)의 토양 흡착 특성 규명

  • 정현정;이민희;도원홍
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.338-341
    • /
    • 2003
  • 유기염소계 농약 중 대표적인 살충제 $\delta$-BHC(hexachlorocyclohexane)와 1, 2-DCB (1, 2-dichlorobenzene)에 대한 논, 밭 토양 및 풍화 토에 흡착 배치실험을 통하여 토양 특성과 유기오염물간의 흡착 관계를 규명하였다. 13개의 토양시료에 대하여 pH, CEC, 유기물 함량, 비표면적, 입도분석, 원소조성분석을 통하여 토양의 물리ㆍ화학적 특징이 토양 흡착에 미치는 영향을 규명하고자 하였다. 유기염소계 농약의 흡착량을 Freundlich isotherm으로 나타내어 흡착분배계수(K$_{d}$)를 산출하였다. $\delta$-BHC는 유기물 함량이 높은 soil-4$_{d}$에서 가장 높은 $K_{d}$ 값을 보였으며, 1,2-DCB의 경우 CEC, 비표면적이 가장 낮은 soil-5에서 낮은 $K_{d}$ 값을 보여 토양 내 유기물 함량과 비표면적이 유기오염물 흡착량에 중요한 요소로 작용함을 알 수 있었다.

  • PDF

Characteristics of adsorption-desorption of herbicide paraquat in soils (제초제 paraquat의 토양중 흡.탈착 특성)

  • Lee, Seog-June;Kim, Byung-Ha;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.70-78
    • /
    • 1998
  • This study was conducted to investigate the adsorption-desorption characteristics of herbicide paraquat on clay minerals, humic materials, and soils under the laboratory conditions. Adsorption time of paraquat on clay minerals was faster than organic materials and soils. Adsorption amount on montmorillonite, 2:1 expanding-lattice clay mineral, was largest among the adsorbents tested. The adsorption capacity of paraquat was approximately 21 % of cation exchange capacity in soils, 45.1 % in kaolinite, and 80.6% in montmorillonite. Humic materials, humic acid and fulvic acid isolated from soil II, adsorbed larger amount of paraquat than kaolinite and soils. Distribution of tightly bound type of paraquat was larger in clay mineral and soils but loosely bound type was larger in humic acid and fulvic acid. In oxidized soil, the adsorption amount of paraquat was decreased to 85.1-95.5% of original soils. Distribution of unbound and loosely bound type of paraquat was decreased in oxidized soil but tightly bound type was increased. The competition cations decreased paraquat adsorption on humic materials and soils but not affected on montmorillonite. No difference was observed as the kinds of cations. In cation-saturated adsorbents, the adsorption amount was decreased largely in humic materials and soils but decreased a little in montmorillonite. The tightly bound type of paraquat in all adsorbents was not desorbed by pH variation, sonication, and cation application but loosely bound type was desorbed. However, the desorption amount was different as a kinds of adsorbents and desorption methods.

  • PDF

The Adsorption and Desorption of Herbicides in Soils (토양내 제초제의 흡착·탈착 특성)

  • Ra, Deog-Gwan;Park, Sang-Sook;Jung, Jae-Sung;Kim, Young-Kyu;O, Tae-Sun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1045-1053
    • /
    • 2000
  • The adsorption and desorption of herbicides such as napropamide and pendimethalin was studied in three kinds of soil. sandy loam. silty clay and loam. The results of batch tests performed with various shaking time, pH, organic matter content and temperature in soil were summarized as follows. The shaking times reached to the equilibrium of the adsorption and desorption for napropamide and pendimethalin in soil were 12 and 6 hours. respectively. For each soil. the adsorption rates of napropamide were 23.35%. 31.57% and 25.95%, the desorption rates of them were 18.42%, 13.42% and 15.89%, respectively. And the adsorption rates of pendimethalin were 59.61%, 77.26% and 64.02%, and the desorption rates of them were 3.23%, 2.93% and 3.07%, respectively. The adsorption isotherms with the Freundlich equation showed better consistency than those with the Langmuir one. The adsorption was affected by the organic matter content when it exceed 2.0%. But if the organic matter content is below 2.0%, it was affected by the clay content. When the organic matter content is 0.95~7.45%, the adsorption coefficients ($K_{fa}$) of napropamide and pendimethalin were 1.17~2.50 and 4.74~16.08 and the desorption coefficients($K_{fd}$) of them were 5.33~34.06 and 24.25~134.00, respectively. Because of the physical adsorption between herbicide molecules and soil surface, little effect of pH variation of soils was appeared for the adsorption and desorption. Because of the solubility of herbicide is related to the temperature, the adsorption rate was decreased and the desorption rate was increased with the temperature increase, respectively.

  • PDF

칼럼실험을 통한 계면활성제 용액에서 phenanthrene의 선택적 제거에 관한 연구

  • An Chi-Gyu;Kim Yeong-Mi;U Seung-Han;Park Jung-Mun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.162-165
    • /
    • 2006
  • 유해성 유기물질로 오염된 토양의 복원을 위한 토양세척공정에서 계면활성제를 선택적으로 재이용하기 위해 활성탄을 이용한 흡착 칼럼의 성능을 평가하였다. 계면활성제로는 Triton X-100을 소수성 유해 유기물질로는 다환방향족 탄화수소의 하나인 phenanthrene를 사용하여 그 성능을 평가하였다. 계면활성제의 흡착은 phenartthrene에 비해 빠른 흡착 특성을 보였으며 phenanthrene은 계면활성제의 포화흡착상태에서도 지속적으로 흡착이 이루어졌다. 이는 계면활성제의 흡착이 종료된 이후에도 유해성 유기물질의 지속적인 흡착을 기대할 수 있어 계면활성제의 지속적인 재이용과 활성탄 사용시간의 증대를 가져올 수 있음을 의미한다. 이와 같은 활성탄 칼럼에서의 유해성 유기물질의 우수한 선택적 흡착 결과는 기본적으로 소수성 정도의 차이와 size exclusion에 의한 기작뿐만 아니라 활성탄에 흡착된 계면활성제에 의한 다환방향족 탄화수소의 추가적인 흡착이 일어나 전체적인 성능이 향상되는 것에 기인한다.

  • PDF

Surface characteristics change of natural crystalline graphite powders by adsorption (유기물 흡착에 의한 인상흑연 분체의 표면특성변환 연구)

  • 김병곤;최상근;정헌생;이재장
    • Proceedings of the KSEEG Conference
    • /
    • 2001.04a
    • /
    • pp.308-310
    • /
    • 2001
  • 유기물질이 오랜 기간동안 고온 고압하에서 탄화작용을 받아 생성된 천연흑연은 단위구조가 탄소육각망평면(炭素六角網平面)이 평행하게 배열된 층상으로 전기전도도 및 윤할성이 우수하나 소수성이 매우 강하며 표변화학적 특성이 거의 없기 때문에 다른 물질과 표면흡착이 매우 어려운 물질이다. 따라서 본 연구에서는 흑연의 표면특성을 변화시키고자 유기물(ABDM)을 흡착시키고 표면흡착 매커니즘 및 표면특성을 해석하였다. 흑연 입자 표면 위의 ABDM흡착은 두 단계의 서로 다른 게에서 이루어졌다. 첫 번째 단계는 흡착 초기 흑연입자와 ABDM의 표면전위 특성차이에 의한 1차 흡착으로 흑연표면 소수성이 더욱 증가하는 상태이고, 두 번째 단계는 1차 흡착된 ABDM 과 용액중의 ABDM chain 상호간의 steric 작용에 의한 2차 흡착이었다. 2차 흡착이 완료된 흑연입자 표면은 ABDM 이중층을 형성하게 되고 이에 따라 흑연의 표면전위 특성을 변화시킬 수 있었다.

  • PDF

Physicochemical Adsorption Characteristics of MTBE and Cadmium on Clay Minerals (점토광물에 대한 MTBE와 카드뮴의 물리화학적 흡착 특성)

  • Lim, Nam-Ho;Seo, Hyung-Joon;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.231-239
    • /
    • 2005
  • This study was performed to investigate adsorption characteristics of MTBE and Cd depending upon types of clay minerals md their physicochemical properties. The adsorption characteristics were examined by batch adsorption test on various experimental parameters such as adsorption time, ratio of solution to soil, concentration of contaminants, content of organic matter, pH, and zeta potential. The adsorption efficiency of MTBE or Cd for three types of clays decreased in response to the increase of the ratio of solution to soil whereas their adsorbed amounts increased. MTBE was greatly adsorbed in the decreasing order of vermiculite, bentonite, and CTAB-bentonite while Cd was adsorbed in the decreasing order of bentonite, vermiculite, and CTA-bentonite. An equilibrium isotherm for MTBE was well fitted to Freundlich plotting whereas that for Cd was closely corresponded to Langmuir isotherm. The adsorbed amount of MTBE on bentonite and vermiculite showed the maximum at 1% and 5% of humic acid, thereafter diminished while the adsorbed amount of MTBE on CTAB-bentonite increased in proportion to humic acid. Conversely, the adsorbed amount of Cd on the addition of humic acid continued to increase regardless of types of adsorbents. For all types of adsorbents, adsorbed quantity and adsorption efficiency of Cd have been coincidently increased at pH 8 and they were further enhanced at pH 10 showing 90% adsorption efficiency. Upon pH rose, the zeta potential on each adsorbent began to decrease, while increasing Cd concentration led to decline of zeta potential, which in turn ascribed to lowering dispersion stability that could consequently enhance adsorption capability.

Adsorption-Desorption, Leaching, and Degradation Pattern of Fungicide Fluazinam in the Soil Environment (살균제 Fluazinam의 토양환경 중 흡.탈착, 용탈 및 분해양상)

  • Hu, Won;Lee, Seog-June;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.128-133
    • /
    • 1997
  • This study was conducted to evaluate the adsorption, desorption, leaching and degradation pattern of fungicide fluazinam in the soil environment under the laboratory conditions. The mode of isothermal adsorption of fluazinam in soil was coincident with the Freundlich equation. The adsorption amount of fluazinam was much higher on soils containing organic matter than on soils oxidized with hydrogen peroxide. The presence of organic matter, humic acid or fulvic acid, increased the adsorption amount of fluazinam on soils. The Freundlich constant K was much higher in soil added with humic acid than in soil added with fulvic acid. The desorption ratio of fluazinam adsorbed to soil was increased by removal of organic matter. In leaching experiment using soil column, the fluazinam applied on the soil surface was not moved down to the bottom of soil and was not detected in leachate water. The degradation of fluazinam was faster in Soil I with rich organic matter than Soil II with poor organic matter, in non-sterilized soil than sterilized soil, and in flooded soil than unflooded soil.

  • PDF

A Study of the Regeneration of Spent GAC using an Electrochemical Method (전기화학적 방법을 이용한 Spent Granular Activated Carbon (GAC)의 재생 연구)

  • Lee, Sangmin;Joo, Soobin;Jo, Youngsoo;Oh, Yeji;Kim, Hyungjun;Shim, Intae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.481-491
    • /
    • 2022
  • This study investigates the characteristics of the GAC adsorption behavior during the operation of a multi-stage cross-flow filtration and GAC adsorption process for the purpose of devising an advanced treatment of combined sewer overflows (CSOs) and evaluates the regeneration efficiency of spent GAC that has reached the design breakpoint. During the filtration process, suspended substances are easily removed, but dissolved organic substances are not removed, necessitating a process capable of removing dissolved organic substances for the advanced treatment of CSOs. In general, GAC adsorption has been applied under low-concentration organic conditions, such as for water purification and tertiary treatments of sewage, and has rarely been applied under conditions with high organic concentrations, such as with sewage or CSOs. Accordingly, this study will provide a new and interesting experience. Also in this study, the continuous operation and breakthrough characteristics of GAC according to the strength of the inflow organic matter were investigated, electrochemical regeneration was applied to the used GAC, and the regeneration efficiency was evaluated through desorption and re-adsorption tests. The results showed that the breakthrough period was 21 days under high concentration conditions, 28 days at medium concentrations, and 32 days under low concentration conditions. The desorption of adsorbed organic matter through electrolysis occurred in the range of 188 to 609 mgCOD/L depending on the electrolysis conditions, and the effect of the electrolyte type led to the finding that NaOH was slightly higher than H2O2.

Adsorptive Removal of Hazardous Organics from Water with Metal-organic Frameworks (금속-유기 골격체(Metal-organic Frameworks)를 활용한 물로부터의 유해 유기물의 흡착 제거)

  • Seo, Pill Won;Song, Ji Yoon;Jhung, Sung Hwa
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.358-365
    • /
    • 2016
  • Removing hazardous materials from water resources is very important for efficient utilization of the resources, and adsorptive removal is regarded as a competitive technology when good adsorbents with high capacity/selectivity are available. Metal-organic framework (MOF), composed of both organic and inorganic (metallic) species, have been tried for various adsorptions because of huge surface area/pore volume, well-defined pore structure, and facile functionalization. In this review, we summarized technologies on adsorptive removal of hazardous organics from water mainly using MOFs as adsorbents. Instead of reporting high adsorption capacity or rate, we summarized mechanisms of interaction between adsorbates (organics) and adsorbents (MOFs) and methods to modify or functionalize MOFs for effective adsorptions. We expect for readers of this review to understand needed characteristics of adsorbents for the adsorptive removal, functionalization of MOFs for effective adsorption and so on. Moreover, they might have an idea on storage and delivery of organics via understanding of the mechanism of adsorption and interaction.