• 제목/요약/키워드: 유기냉매 사이클

검색결과 21건 처리시간 0.024초

용적형 팽창기 입구 조건 변화에 따른 유기랭킨사이클 성능 분석 (Analysis of Performance of Organic Rankine Cycle for Inlet Condition of Displacement Type Expander)

  • 신동길
    • 에너지공학
    • /
    • 제26권1호
    • /
    • pp.23-27
    • /
    • 2017
  • 유기랭킨사이클에서 팽창기는 전체 성능과 사이클 효율에 큰 영향을 미치는 중요 부품이다. 유기랭킨사이클에 적용되는 팽창기는 입구 압력과 온도가 팽창기 기계적 특성이나 작동유체 특성 등에 의해 제한받게 되는데, 유기랭킨사이클은 팽창기 입구압력과 온도에 따라 사이클 출력, 흡수 열량 및 효율 등이 변화하게 된다. 본 연구에서는 용적형 팽창기가 적용되는 작동유체 냉매 R134a인 유기랭킨사이클의 성능이 팽창기 입구조건에 따라 유기랭킨사이클의 성능이 어떻게 변화하는지 이론적으로 비교 분석을 수행하였다.

ASPEN PLUS®를 이용한 태양열 유기랭킨사이클 열병합 발전시스템의 공동주택 적합도 분석 (Feasibility of a Solar Thermal Organic Rankine Cycle Power Plant for an Apartment Complex with Aspen Plus®)

  • 임석연;김형근;유상석
    • 대한기계학회논문집B
    • /
    • 제39권4호
    • /
    • pp.317-324
    • /
    • 2015
  • 본 연구에서는 아파트단지에 적용되는 태양열 급탕 시스템의 에너지 활용도를 높이기 위해 유기랭킨사이클을 적용하여 해석적 연구를 수행하였다. 시스템 해석은 Aspen $Plus^{(R)}$을 활용하였으며 태양열집열기는 급탕 온도와 유기랭킨 사이클의 운전 조건을 고려하여 진공관형 집열기를 적용하였다. R134a, R141a, R245fa 등의 냉매를 작동유체로 선정하였으며, 시스템 성능해석을 통하여 R245fa 냉매가 적용가능성이 가장 높게 나타났다. 비가역성 해석과 민감도 해석을 통해 유기랭킨 사이클 시스템의 효율 및 성능 확보를 위해서는 증발기와 터빈에 대한 기술 개발이 매우 중요하다는 것을 밝혀냈으며, 순수 급탕으로만 활용하는 시스템에 전기 생산 설비를 추가하게 되면 약 50%의 추가적인 경제성이 확보됨을 확인하였다.

작동유체 및 사이클에 따른 해양온도차발전용 유기랭킨사이클의 성능분석 (Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to the working fluid and the cycle)

  • 김준성;김도엽;김유택;강호근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권9호
    • /
    • pp.881-889
    • /
    • 2015
  • 해양온도차발전은 해양의 표층수와 심층수의 온도차를 이용하여 발전하는 유기랭킨사이클이다. 작동유체와 사이클 구성은 유기랭킨사이클의 열역학적 효율에 큰 영향을 미치는 요소이다. 본 연구에서는 작동유체와 사이클에 따른 해양온도차발전시스템의 성능분석을 수행하였다. 고전적인 단순 랭킨사이클과 단순 랭킨사이클의 대안으로 제시되고 있는 개방형 및 통합형 재생 랭킨사이클 그리고 칼리나 사이클이 본 연구에서 고려되었으며, 작동유체로는 9종의 단일냉매와 3종의 혼합냉매를 본 연구에 적용하였다. 사이클의 성능분석에는 핀치포인트온도차를 일정하게 유지하는 핀치포인트분석이 적용되었다. 성능분석결과를 살펴보면, 단순 랭킨사이클과 개방형 및 통합형 재생 랭킨사이클의 경우 RE245fa2를 작동유체로 사용하며, 칼리나 사이클의 경우 $NH_3/H_2O$의 질량비가 0.9:0.1일 때 열역학적 효율이 가장 높았다. 한편, 개방형 및 통합형 재생 랭킨사이클과 칼리나 사이클을 해양온도차발전시스템에 적용할 경우 단순 랭킨사이클과 비교하여 각각 약 2.0 %, 1.0%, 10.0%의 효율 향상을 기대할 수 있었다.

선박의 해수 온도차를 이용한 ORC 발전 시스템에 관한 연구 (A Study on the Ship's ORC Power System using Seawater Temperature Difference)

  • 오철;송영욱
    • 한국항해항만학회지
    • /
    • 제36권5호
    • /
    • pp.349-355
    • /
    • 2012
  • 본 논문에서는 선박에서 배출되는 $CO_2$ 배출을 최소화하기 위한 노력의 일환으로 선박에서 배출되는 열에너지를 회수하고 재활용하여 극대화 시킬 수 있는 방안들을 조사하고 버려지는 열에너지를 이용하여 ORC(Organic Rankine Cycle) 발전장치를 구동함으로써 선박의 에너지 효율을 높이고 온실가스 배출을 최소화할 수 있는 방안들을 연구하였다. 선박에서 배출되는 배기가스의 폐열을 열원으로 하는 유기냉매 랭킨사이클을 구성하는 방안과 열에너지 비중은 높지만 상대적으로 낮은 온도인 해수냉각 시스템으로 배출되는 열에너지를 재활용하여 터빈 발전기를 구동하는 ORC 발전시스템을 설계하고 시뮬레이션 하였다. 시스템 해석 결과 배기가스에서는 1,000kW급, 해수 냉각 시스템에서는 650kW급 발전 출력을 얻을 수 있었고, 다양한 친환경 유기냉매를 이용하여 온도와 유량 조건에 따른 열 해석을 실시하여 시스템의 효율과 출력을 비교하였다.

해수 온도차를 이용한 선박의 ORC 발전 시스템 최적화 (A Optimization of the ORC for Ship's Power Generation System)

  • 오철;송영욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.595-602
    • /
    • 2012
  • 본 논문에서는 선박에서 배출되는 $CO_2$ 배출을 최소화하기 위한 노력의 일환으로 선박으로부터 배출되는 열에너지를 회수하고 재활용하는 방안으로 유기랭킨사이클 발전장치를 구동함으로써 선박의 에너지 효율을 높이고 온실가스 배출을 최소화할 수 있는 방안을 연구하였다. 선박에서 배출되는 배기가스와 냉각 시스템에서 배출되는 열에너지를 회수하여 터빈 발전기를 구동하는 ORC 발전시스템을 설계하고 시뮬레이션 하였다. 다양한 친환경 유기냉매를 이용하여 냉매를 적용하여 온도와 유량변화에 따른 열 해석을 실시하였고 냉각수 열원 예열기, 배기가스 가열기로 시스템을 구성하여 2,400kW급의 발전 출력을 얻을 수 있었다.

냉매(R245fa)를 이용한 유기랭킨 사이클에 관한 연구 (A Study on the Organic Rankine Cycle Using R245fa)

  • 조수용;조종현;김진환
    • 한국유체기계학회 논문집
    • /
    • 제16권3호
    • /
    • pp.10-17
    • /
    • 2013
  • The organic Rankine cycle has been widely used to convert the renewable energy such as the solar energy, the geothermal energy, or the waste energy etc., to the electric power. Some previous studies focused to find what kind of refrigerant would be a best working fluid for the organic Rankine cycle. In this study, R245fa was chosen to the working fluid, and the cycle analysis was conducted for the output power of 30kW or less. In addition, properties (temperature, pressure, entropy, and enthalpy etc.) of the working fluid on the cycle were predicted when the turbine output power was controlled by adjusting the mass flowrate. The configuration of the turbine was a radial-type and the supersonic nozzles were applied as the stator. So, the turbine was operated in partial admission. The turbine efficiency and the optimum velocity ratio were considered in the cycle analysis for the low partial admission rate. The computed results show that the system efficiency is affected by the partial admission rate more than the temperature of the evaporator.

초소형 유기랭킨사이클용 스크롤팽창기 효율 특성 분석 (Analysis of Efficiencies of Scroll Expander for Micro Scale Organic Rankine cycle)

  • 신동길
    • 에너지공학
    • /
    • 제21권4호
    • /
    • pp.398-401
    • /
    • 2012
  • 본 연구에서는 자동차용 엔진 폐열 회수 유기랭킨사이클에 적용하기 위해 개발 중인 스크롤 팽창기의 효율을 상용 스크롤 팽창기와 비교 분석을 수행하였다. 팽창기 효율 특성 시험을 위해 유기랭킨사이클을 운전하면서 팽창기 출력, 팽창기 입구 온도, 압력 및 작동유체(냉매 R134a)의 유량을 측정하였으며, 개발 중인 스크롤 팽창기의 전효율은 상용 스크롤 팽창기의 전효율에 비해 매우 낮은 수준을 나타내었다. 특히 팽창기 내부의 작동유체 누설에 의한 체적효율 저하가 전효율 저하에 큰 영향을 주는 것으로 파악되었기 때문에 향후 팽창기 효율 향상을 위해 팽창기 내부의 누설문제를 필히 해결해야할 것으로 분석되었다.

200kW ORC 터빈 개발 및 구성 (Design and Configuration of 200kW Organic Rankine Cycle Turbine)

  • 한상조;서종범
    • 대한기계학회논문집B
    • /
    • 제38권12호
    • /
    • pp.1057-1064
    • /
    • 2014
  • 최근 전세계적으로 재생에너지의 관심이 증가하고 있다. 그 중 많은 관심을 받고 있는 것이 상대적으로 낮은 온도의 폐열을 사용하는 유기랭킨사이클(ORC)이다. 유기랭킨사이클은 기존의 증기터빈사이클과 유사한 기술을 사용하지만 낮은 온도의 폐열을 사용하기 위해서 증기대신 냉매를 작동유체로 사용한다. 작동유체를 냉매로 사용함으로 인해 이상기체 가정을 사용할 수 없고, 이는 ORC 시스템에 이용되는 터빈의 설계를 좀 더 복잡하게 만든다. 또, 냉매의 큰 분자량과 복잡한 분자구조로 인하여 낮은 음속을 가지게 되고 이로 인해서 쉽게 초킹 조건에 접근하게 된다. 본 연구에서 R245fa를 작동유체로 하여 입구온도 $124^{\circ}$에 팽창비 9 의 조건에서 터빈의 효율을 증가시키기 위해 다단으로 설계된 아음속 ORC 터빈을 설계하는 과정과 터빈의 성능에 대하여 설명하고자 한다. 설계된 터빈은 200kW 급의 ORC 발전 시스템에 사용될 예정이다.

유기랭킨사이클의 작동유체 물성치가 사이클에 미치는 영향에 관한 연구 (Effect on the Cycle by the Properties of Working Fluids Using Organic Rankine Cycle)

  • 조수용;조종현
    • 한국유체기계학회 논문집
    • /
    • 제18권4호
    • /
    • pp.5-12
    • /
    • 2015
  • Several working fluids for Organic Rankine Cycle(ORC) were recommended by many researchers. However, the recommended optimal working fluids were not exactly same because the operating conditions of ORC and application were different. The major parameter to select the working fluid for ORC was the temperature of available thermal energy. In this study, low-grade thermal energy was used for the heat source for ORC and the appropriate working fluids were searched among 26 candidate working fluids. The requirements to be a working fluid for ORC were reviewed and the cycle analysis for simple cycle was conducted with $75^{\circ}C$ and $35^{\circ}C$ at the turbine inlet and exit, respectively. R600, R601, toluene were best candidates if the system could work without leaking the working fluid. Next, R236ea, R245ca, R245fa were recommended because they are not inflammable working fluids as well as better efficiency.

바이오매스를 에너지원으로 하는 유기냉매 사이클 스크롤 팽창기 발전 장치 설계 (Design of Scroll Expander for Electric Power Generation System using Organic Rankine Cycle with Biomass Energy Source)

  • 문제현;유제승;김현진;조남진
    • 동력기계공학회지
    • /
    • 제16권4호
    • /
    • pp.30-36
    • /
    • 2012
  • A scroll expander has been designed to produce a shaft power from a R134a Rankine cycle for electricity generation. Heat was supplied to the Rankine cycle through a heat exchanger, which received heat from another cycle of water. In the water cycle, water was heated up in a boiler using biogenic solid fuel. The designed scroll expander was a horizontal type, and a trochoidal oil pump was employed for oil supply to bearings and Oldham-ring keys. For axial compliance, a back pressure chamber was created on the backside of the orbiting scroll base plate. Numerical study has been carried out to estimate the performance of the designed scroll expander. The expander was estimated to produce the shaft power of about 2.9 kW from a heat supply of 36 kW, when the temperature of R134a was $80^{\circ}C$ and $35^{\circ}C$ at the evaporator and condenser of the Rankine cycle, respectively. The expander efficiency was about 70.5%. When the amount of heat supply varied in the ranges of 7.5~55 kW, the expander efficiency changed in the range of 45.6~70.5%, showing a peak efficiency of 70.5% at the design shaft speed.