• Title/Summary/Keyword: 유공

Search Result 1,833, Processing Time 0.019 seconds

Flow Resistance and Modeling Rule of Fishing Nets -1. Analysis of Flow Resistance and Its Examination by Data on Plane Nettings- (그물어구의 유수저항과 근형수칙 -1. 유수저항의 해석 및 평면 그물감의 자료에 의한 검토-)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.183-193
    • /
    • 1995
  • Assuming that fishing nets are porous structures to suck water into their mouth and then filtrate water out of them, the flow resistance N of nets with wall area S under the velicity v was taken by $R=kSv^2$, and the coefficient k was derived as $$k=c\;Re^{-m}(\frac{S_n}{S_m})n(\frac{S_n}{S})$$ where $R_e$ is the Reynolds' number, $S_m$ the area of net mouth, $S_n$ the total area of net projected to the plane perpendicular to the water flow. Then, the propriety of the above equation and the values of c, m and n were investigated by the experimental results on plane nettings carried out hitherto. The value of c and m were fixed respectively by $240(kg\cdot sec^2/m^4)$ and 0.1 when the representative size on $R_e$ was taken by the ratio k of the volume of bars to the area of meshes, i. e., $$\lambda={\frac{\pi\;d^2}{21\;sin\;2\varphi}$$ where d is the diameter of bars, 21 the mesh size, and 2n the angle between two adjacent bars. The value of n was larger than 1.0 as 1.2 because the wakes occurring at the knots and bars increased the resistance by obstructing the filtration of water through the meshes. In case in which the influence of $R_e$ was negligible, the value of $cR_e\;^{-m}$ became a constant distinguished by the regions of the attack angle $ \theta$ of nettings to the water flow, i. e., 100$(kg\cdot sec^2/m^4)\;in\;45^{\circ}<\theta \leq90^{\circ}\;and\;100(S_m/S)^{0.6}\;(kg\cdot sec^2/m^4)\;in\;0^{\circ}<\theta \leq45^{\circ}$. Thus, the coefficient $k(kg\cdot sec^2/m^4)$ of plane nettings could be obtained by utilizing the above values with $S_m\;and\;S_n$ given respectively by $$S_m=S\;sin\theta$$ and $$S_n=\frac{d}{I}\;\cdot\;\frac{\sqrt{1-cos^2\varphi cos^2\theta}} {sin\varphi\;cos\varphi} \cdot S$$ But, on the occasion of $\theta=0^{\circ}$ k was decided by the roughness of netting surface and so expressed as $$k=9(\frac{d}{I\;cos\varphi})^{0.8}$$ In these results, however, the values of c and m were regarded to be not sufficiently exact because they were obtained from insufficient data and the actual nets had no use for k at $\theta=0^{\circ}$. Therefore, the exact expression of $k(kg\cdotsec^2/m^4)$, for actual nets could De made in the case of no influence of $R_e$ as follows; $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})\;.\;for\;45^{\circ}<\theta \leq90^{\circ}$$, $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}\;.\;for\;0^{\circ}<\theta \leq45^{\circ}$$

  • PDF

Characteristics and Distribution Pattern of Carbonate Rock Resources in Kangwon Area: The Gabsan Formation around the Mt. Gachang Area, Chungbuk, Korea (강원 지역에 분포하는 석회석 자원의 특성과 부존환경: 충북 가창산 지역의 갑산층을 중심으로)

  • Park, Soo-In;Lee, Hee-Kwon;Lee, Sang-Hun
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.437-448
    • /
    • 2000
  • The Middle Carboniferous Gabsan Formation is distributed in the Cheongrim area of southern Yeongwol and the Mt. Gachang area of Chungbuk Province. This study was carried out to investigate the lithological characters and geochemical composition of the limestones and to find out controlling structures of the limestones of the formation. The limestones of the Gabsan Formation are characterized by the light gray to light brown in color and fine and dense textures. The limestone grains are composed of crinoid fragments, small foraminfers, fusulinids, gastropods, ostracods, etc. Due to the recrystallization, some limestones consist of fine crystalline calcites. The chemical analysis of limestones of the formation was conducted to find out the contents of CaO, MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$. The content of CaO ranges from 49.78-60.63% and the content of MgO ranges from 0.74 to 4.63% The contents of Al$_2$O$_3$ and Fe$_2$O$_3$ are 0.02-0.55% and 0.02${\sim}$0.84% , respectively. The content of SiO$_2$ varies from 1.55 to 4.80%, but some samples contain more than 6.0%. The limestones of the formation can be grouped into two according to the CaO content: One is a group of which CaO content ranges from 49.78 to 56.26% and the other is a group of which CaO content varies from 59.36 to 60.38%. In the first group, the contents of Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ range very irregularly according to the CaO content. In the second group, the values of MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ are nearly same. Detailed structural analysis of mesoscopic structures and microstructures indicates the five phase of deformation in the study area. The first phase of deformation(D$_1$) is characterized by regional scale isoclinal folds, and bedding parallel S$_1$ axial plane foliation which is locally developed in the mudstone and sandstone. Based on the observations of microstructures, S$_1$ foliations appear to be developed by grain preferred orientation accompanying pressure-solution. During second phase of deformation, outcrop scale E-W trending folds with associated foliations and lineations are developed. Microstructural observations indicate that crenulation foliations were formed by pressure-solution, grain boundary sliding and grain rotation. NNW and SSE trending outcrop scale folds, axial plane foliations, crenulation foliations, crenulation lineations, intersection lineations are developed during the third phase of deformation. On the microscale F$_3$ fold, axial plane foliations which are formed by pressure solution are well developed. Fourth phase of deformation is characterized by map scale NNW trending folds. The pre-existing planar and linear structures are reoriented by F$_4$ folds. Fifth phase of deformation developed joints and faults. The distribution pattern of the limestones is mostly controlled by F$_1$ and F$_4$ folds.

  • PDF

A Study on the Growth Diagnosis and Management Prescription for Population of Retusa Fringe Trees in Pyeongji-ri, Jinan(Natural Monument No. 214) (진안 평지리 이팝나무군(천연기념물 제214호)의 생육진단 및 관리방안)

  • Rho, Jae-Hyun;Oh, Hyun-Kyung;Han, Sang-Yub;Choi, Yung-Hyun;Son, Hee-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.115-127
    • /
    • 2018
  • This study was attempted to find out the value of cultural assets through the clear diagnosis and prescription of the dead and weakness factors of the Population of Retusa Fringe Trees in Pyeongji-ri, Jinan(Natural Monument No. 214), The results are as follows. First, Since the designation of 13 natural monuments in 1968, since 1973, many years have passed since then. In particular, despite the removal of some of the buried soil during the maintenance process, such as retreating from the fence of the primary school after 2010, Second, The first and third surviving tree of the designated trees also have many branches that are dead, the leaves are dull, and the amount of leaves is small. vitality of tree is 'extremely bad', and the first branch has already been faded by a large number of branches, and the amount of leaves is considerably low this year, so that only two flowers are bloomed. The second is also in a 'bad'state, with small leaves, low leaf density, and deformed water. The largest number 1 in the world is added to the concern that the s coverd oil is assumed to be paddy soils. Third, It is found that the composition ratio of silt is high because it is known as '[silty loam(SiL)]'. In addition, the pH of the northern soil at pH 1 was 6.6, which was significantly different from that of the other soil. In addition, the organic matter content was higher than the appropriate range, which is considered to reflect the result of continuous application for protection management. Fourth, It is considered that the root cause of failure and growth of Jinan pyeongji-ri Population of Retusa Fringe Trees group is chronic syndrome of serious menstrual deterioration due to covered soil. This can also be attributed to the newly planted succession and to some of the deaths. Fifthly, It is urgent to gradually remove the subsoil part, which is estimated to be the cause of the initial damage. Above all, it is almost impossible to remove the coverd soil after grasping the details of the soil, such as clayey soil, which is buried in the rootstock. After removal of the coverd soil, a pestle is installed to improve the respiration of the roots and the ground with Masato. And the dead 4th dead wood and the 5th and 6th dead wood are the best, and the lower layer vegetation is mown. The viable neck should be removed from the upper surface, and the bark defect should undergo surgery and induce the development of blindness by vestibule below the growth point. Sixth, The underground roots should be identified to prepare a method to improve the decompression of the root and the respiration of the soil. It is induced by the shortening of rotten roots by tracing the first half of the rootstock to induce the generation of new roots. Seventh, We try mulching to suppress weed occurrence, trampling pressure, and soil moisturizing effect. In addition, consideration should be given to the fertilization of the foliar fertilizer, the injection of the nutrients, and the soil management of the inorganic fertilizer for the continuous nutrition supply. Future monitoring and forecasting plans should be developed to check for changes continuously.