• 제목/요약/키워드: 유공압현가장치

검색결과 9건 처리시간 0.03초

대형 트럭 캐빈 공기 현가장치의 유공압 모델링 및 해석 (Hydropneumatic Modeling and Analysis of a Heavy Truck Cabin Air Suspension System)

  • 신행우;최규재;이광헌;고한영;조길준
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.128-134
    • /
    • 2008
  • In this paper, a hydropneumatic modeling and analysis of a heavy truck cabin air suspension system is presented. Cabin air suspension system is a system which improves ride comfort of a heavy truck and it can reduce vibration between truck frame and cabin. The components of the system, air spring, shock absorber, leveling valve and full cabin system are mathematically modelled using AMESim software. Simulation results of components and full cabin system are compared with experimental data of components and test results of a cabin using 6 axis simulation table. It is found that the simulation results are in good agreements with test results, and the hydropneumatic model can be used well to predict dynamic characteric of heavy truck cabin air suspension system.

감쇠력 가변댐퍼를 이용한 반능동 현가장치의 실차실험 특성에 관한 연구 (A Study on the Field Test Characteristics of Semi-Active Suspension System with Continuous Damping Control Damper)

  • 이광헌;이춘태;정헌술
    • 유공압시스템학회논문집
    • /
    • 제7권4호
    • /
    • pp.32-38
    • /
    • 2010
  • A semi-active suspension is an automotive technology that controls the vertical movement of the vehicle while the car is driving. The system therefore virtually eliminates body roll and pitch variation in many driving situations including cornering, accelerating, and braking. This technology allows car manufacturers to achieve a higher degree of both ride quality and car handling by keeping the tires perpendicular to the road in corners, allowing for much higher levels of grip and control. An onboard computer detects body movement from sensors located throughout the vehicle and, using data calculated by opportune control techniques, controls the action of the suspension. Semi-active systems can change the viscous damping coefficient of the shock absorber, and do not add energy to the suspension system. Though limited in their intervention (for example, the control force can never have different direction than that of the current speed of the suspension), semi-active suspensions are less expensive to design and consume far less energy. In recent time, the research in semi-active suspensions has continued to advance with respect to their capabilities, narrowing the gap between semi-active and fully active suspension systems. In this paper we are studied the characteristics of vehicle movement during the field test with conventional and semi-active suspension system.

  • PDF

피드백 선형화 제어기를 사용한 1/4 차량 현가장치 시뮬레이터의 위치 제어 (Position Control of a 1/4 Car Suspension Simulator using a Feedback Linearization Controller)

  • 김태형;이일영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권3호
    • /
    • pp.8-15
    • /
    • 2012
  • In the study, a control strategy using a feedback linearization compensator and a disturbance observer was suggested and applied to a hydraulic control system for a vehicle suspension simulator. Although the hydraulic system has comparatively big external loads composed by constant and varying loads, it is ascertained that excellent control performances are obtained with the suggested control strategy.

차량 현가장치 성능향상을 위한 댐퍼 최적화 설계에 대한 연구 (A Study on the Optimization Design of Damper for the Improvement of Vehicle Suspension Performance)

  • 이춘태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.74-80
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of vehicle. It converting the kinetic energy of the shock into another form of energy, typically heat. In a vehicle, a damper reduce vibration of car, leading to improved ride comfort and running stability. Therefore, a damper is one of the most important components in a vehicle suspension system. Conventionally, the design process of vehicle suspensions has been based on trial and error approaches, where designers iteratively change the values of the design variables and reanalyze the system until acceptable design criteria are achieved. Therefore, the ability to tune a damper properly without trial and error is of great interest in suspension system design to reduce time and effort. For this reason, a many previous researches have been done on modeling and simulation of the damper. In this paper, we have conducted optimal design process to find optimal design parameters of damping force which minimize a acceleration of sprung mass for a given suspension system using genetic algorithm.

궤도차량의 동적반응 최적설계에 관한 연구 (A Study on Dynamic Response Optimization of a Tracked Vehicle)

  • 김영훈;김민수;최동훈;유홍희;김종수;김재용;서문석
    • 한국자동차공학회논문집
    • /
    • 제3권2호
    • /
    • pp.16-29
    • /
    • 1995
  • In this study a tracked vehicle is idealized as a 2-dimensional 9-degrees-of-freedom model which takes into account the effects of HSU units, torsion bars, and track. For the model equations of motion are derived using Kane's method. By using the equations of motion, a numerical example is solved and results are compared to those obtained by using a general purpose multi body dynamic analysis program. The comparison study shows the reasonable coherence between the two results. which confirms the effectiveness of the model. With the model, dynamic response optimization is carried out. The objective function is the peak value of the vertical acceleration of the vehicle at the driver's seat, and the constraints are the wheel travel limits, the ground clearance. and the limits of other design variables. Three different sets of design variables are chosen and used for the optimization. The results show the attenuation of the acceleration peak value. Thus the procedure presented in this study can be utilized for the design improvement of the real system.

  • PDF

반능동 현가장치의 하이브리드형 댐퍼 개발에 관한 연구 (Development and Evaluation of a Hybrid Damper for Semi-active Suspension)

  • 진철호;윤영원;이재학
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권1호
    • /
    • pp.38-49
    • /
    • 2018
  • This research describes the development model and testing of a hybrid damper which can be applicable to a vehicle suspension. The hybrid damper is devised to improve the performance of a conventional passive oil damper using a magneto-rheological (MR) accumulator which consists of a gas accumulator and a MR device. The level of damping is continuously variable by the means of control in the applied current in a MR device fitted to a floating piston which separates the gas and the oil chamber. A simple MR device is used to resist the movement of floating piston. At first a mathematical model which describes all flows within the conventional oil damper is formulated, and then a small MR device is also devised and adopted to a mathematical model to characterize the performance of the device.

취약면적법과 DMEA를 활용한 지상전투차량 유공압 현가장치의 취약성 평가 (The Vulnerability Assessment of Hydro-pneumatic Suspension of Ground Combat Vehicles Using Vulnerable Area Method and DMEA)

  • 남명훈;박강;박우성;유철
    • 한국CDE학회논문집
    • /
    • 제22권2호
    • /
    • pp.141-149
    • /
    • 2017
  • Vulnerability assesses the loss of major performance functions of GCV (Ground Combat Vehicles) when it is hit by enemy's shell. To decide the loss of major functions, it is determined what effects are on the performance of GCV when some components of GCV are failed. M&S (Modeling and Simulation) technology is used to vulnerability assessment. The hydro-pneumatic suspension is used as a sample part. The procedures of vulnerability assessment of the hydro-pneumatic suspension are shown as follows: 1) The components of the suspension are defined, and shot lines are generated evenly around the part. 2) The penetrated components are checked by using the penetration equation. 3) The function model of the suspension is designed by using IDEF0. 4) When the failure of the critical components of the suspension happens, its effect on the function of the suspension can be estimated using DMEA (Damage Mode and Effects Analysis). 5) The diagram of FTA (Fault Tree Analysis) is designed by exploiting DMEA. 6) The damage probability of the suspension is calculated by using FTA and vulnerable area method. In this paper, SLAP (Shot Line Analysis Program) which was developed based on COVART methodology. SLAP calculates the damage probability and visualizes the vulnerable areas of the suspension.