• Title/Summary/Keyword: 윈드프로파일러 레이더

Search Result 13, Processing Time 0.017 seconds

Quality Control of the UHF Wind Profiler Radar (UHF 윈드프로파일러 레이더 자료의 품질 개선)

  • Jo, Won-Gi;Kwon, Byung-Hyuk;Kim, Park-Sa;Kim, Min-Seong;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.277-290
    • /
    • 2018
  • Wind data observed by wind profiler provide wind vectors with the altitudes using PCL1300, wind computation program. As a result of application with parameters set in program currently, it is difficult to compute wind vectors in the upper air over 3 km. This id because a very strict criterion for parameters removes large amounts of data. In this study, therefore, we improve the methods of application by resetting parameters to expand data collection area of wind vectors and reduce underestimation. Although the acquisition rate of the wind vector increased from 72.2% to 92.2%, the RMSE of the wind speed maintained 1.5 m/s - 3.1 m/s, which is less than 15% of the error rate at each altitude.

Comparison of Data Measured by Doppler Instruments at 1,550 nm and 23.2 cm Wavelengths (1,550 nm와 23.2 cm 파장의 도플러 측기 관측자료 비교)

  • Geon-Myeong Lee;Byung-Hyuk Kwon;Kyung-Hun Lee;Zi-Woo Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1041-1048
    • /
    • 2023
  • Wind LiDAR and Wind Profiler are devices that produce continuous vertical distribution of wind vector in high-resolution data, and their use has recently been increasing. Although the observation and data processing methods of the two devices are similar, differences in wind detection accuracy may occur depending on weather and operation settings. introduce the characteristics of the two instruments and wind calculation methods, and apply the latest instrument verification standards to evaluate their accuracy by comparing them with the wind observed with a radiosonde. Accordingly, a new direction for performance verification following the introduction of equipment and additional necessary complements are presented.

Retrieval of Remotely Sensed Fluid Velocity and Esimation of Its Accuracy by Eulerian Measurement (오일러 방법으로 원격 측정된 유체운동의 속도 산출과 정확도 평가)

  • Kim, Min-Seong;Lee, Kyung Hun;Kwon, Byung-Hyuk;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.151-156
    • /
    • 2021
  • The speed and direction of the earth's fluid motion is measured by a remote sensing method using electromagnetic waves. Using UHF radar and GPS Sonde, the vertical profile of fluid velocity was calculated by the Euler measurement method and the Lagrange measurement method, respectively. Since the wind direction, which is the direction of motion of the atmosphere, is indicated in the direction of the wind blowing, and a circular value of 0° - 360° is used, it is necessary to pay attention to statistical analysis. Errors caused by calculation conditions are provided, and the corrected accuracy of comparison results is improved by 400%.