• Title/Summary/Keyword: 윈도우 변형

Search Result 42, Processing Time 0.016 seconds

HummingBird: A Similar Music Retrieval System using Improved Scaled and Warped Matching (HummingBird: 향상된 스케일드앤워프트 매칭을 이용한 유사 음악 검색 시스템)

  • Lee, Hye-Hwan;Shim, Kyu-Seok;Park, Hyoung-Min
    • Journal of KIISE:Databases
    • /
    • v.34 no.5
    • /
    • pp.409-419
    • /
    • 2007
  • Database community focuses on the similar music retrieval systems for music database when a humming query is given. One of the approaches is converting the midi data to time series, building their indices and performing the similarity search on them. Queries based on humming can be transformed to time series by using the known pitch detection algorithms. The recently suggested algorithm, scaled and warped matching, is based on dynamic time warping and uniform scaling. This paper proposes Humming BIRD(Humming Based sImilaR mini music retrieval system) using sliding window and center-aligned scaled and warped matching. Center-aligned scaled and warped matching is a mixed distance measure of center-aligned uniform scaling and time warping. The newly proposed measure gives tighter lower bound than previous ones which results in reduced search space. The empirical results show the superiority of this algorithm comparing the pruning power while it returns the same results.

A Methodology for 3-D Optimally-Interpolated Satellite Sea Surface Temperature Field and Limitation (인공위성 해수면온도 3-D 최적 내삽 합성장 생산 방법과 한계점)

  • Park, Kyung-Ae;Kim, Young-Ho
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.223-233
    • /
    • 2009
  • Three-dimensional (3-D) optimally-interpolated sea surface temperature (SST) field was produced by using AQUA/AMSR-E satellite data, and its limitations were described by comparing the temporal average of sea surface temperatures. The 3-D OI (Optimum Interpolation) SST showed a small error of less than $0.05^{\circ}C$ in the central North Pacific, but yielded large errors of greater than $0.4^{\circ}C$ at the coastal area where the satellite microwave data were not available. OI SST composite around pixels with no observation due to heavy rainfall or cloudy pixels had estimation errors of $0.1-0.15^{\circ}C$. Comparison with temporal means showed a tendency that overall OI SSTs were underestimated around heavy cloudy pixels and smoothed out by reducing the magnitude of SST fronts. In the low-latitude areas near the equator, OI SST field produced discontinuity, originated from the window size for the OI procedure. This was mainly caused by differences in the spatial scale of oceanic features. Infernal Rossby deformation radius, as a measure of spatial stale, showed dominant latitudinal variations with O(1) difference in the North Pacific. This study suggests that OI SST methodology should consider latitudinally-varying size of window and the characteristics of spatial scales of oceanic phenomena with substantial dependency on latitude and vertical structure of density.