• Title/Summary/Keyword: 위험예측

Search Result 2,194, Processing Time 0.139 seconds

Prediction of Forest Fire Hazardous Area Using Predictive Spatial Data Mining (예측적 공간 데이터 마이닝을 이용한 산불위험지역 예측)

  • Han, Jong-Gyu;Yeon, Yeon-Kwang;Chi, Kwang-Hoon;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.6
    • /
    • pp.1119-1126
    • /
    • 2002
  • In this paper, we propose two predictive spatial data mining based on spatial statistics and apply for predicting the forest fire hazardous area. These are conditional probability and likelihood ratio methods. In these approaches, the prediction models and estimation procedures are depending un the basic quantitative relationships of spatial data sets relevant forest fire with respect to selected the past forest fire ignition areas. To make forest fire hazardous area prediction map using the two proposed methods and evaluate the performance of prediction power, we applied a FHR (Forest Fire Hazard Rate) and a PRC (Prediction Rate Curve) respectively. In comparison of the prediction power of the two proposed prediction model, the likelihood ratio method is mort powerful than conditional probability method. The proposed model for prediction of forest fire hazardous area would be helpful to increase the efficiency of forest fire management such as prevention of forest fire occurrence and effective placement of forest fire monitoring equipment and manpower.

Development of Risk Prediction Index in Water Distribution System (상수관로 위험도 예측을 위한 평가 지표 개발)

  • Ye Ji Choi;Han Na Jung;Dong Woo Jang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.402-402
    • /
    • 2023
  • 상수관망은 충분한 양질의 수돗물을 공급하기 위한 사회기반 시설물이다. 상수관로의 노후화, 누수 등은 수도 사고 발생의 가능성을 증가시키고, 수돗물 안전성에 대한 신뢰도를 감소시킨다. 수돗물 공급 전 과정을 인공지능(AI), 정보통신기술(ICT)과 결합한 지능형 상수도관 예측 및 관리 시스템을 구축하여, 상수도 수질 사고를 조기에 감지하고 사전에 취약지점을 예측할 필요가 있다. 이를 위해서는 상수관로의 위험도를 평가하기 위한 체계적인 데이터와 기준이 필요하다. 본 연구에서는 상수관로의 위험도 예측모델을 개발하기 위해 상수관로 위험도와 관련된 평가 인자를 선정하고 분류하였으며, 각 인자의 명확한 기준을 제시하였다. 국내·외 상수도 위험도 평가 항목에 대한 자료를 비교 및 분석하였고, 전문가 자문을 통해 인자를 정립하여 상수관로 위험도 평가 지표를 개발하였다. 개발된 평가 지표의 현장 적용성과 실효성 검증을 위해 정량적인 데이터 확보가 가능하고 상태를 평가할 수 있는 대상 지역을 선정하였다. 문헌 자료의 평가항목들과 전문가 의견을 바탕으로 상수관로 위험도 평가 인자를 31개의 직접 인자와 5개의 간접 인자로 구분하였고, 인자별 평가 기준을 제시하였다. 직접 인자는 노후화 정도를 파악할 수 있는 노후도 평가 항목, 지역 특성을 반영한 토양 부식성 항목, 실시간으로 측정하여 결과를 제공하는 실시간 계측 항목, 직접적인 수질 결과를 제공하는 정수장 수질 항목, 상수관로의 건전성을 평가하는 자산관리 항목으로 분류하였다. 추후, 위험도 평가 운용을 위한 알고리즘을 개발하면 상수도 사고 위험에 대한 예방 및 대응 전략을 수립할 수 있을 것으로 기대된다.

  • PDF

자율운항선박의 비상상황인식을 위한 경로예측 기반의 충돌위험영역 식별 기술의 기초 연구

  • 최진우;박정홍;김혜진
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.133-134
    • /
    • 2022
  • 본 논문에서는 자율운항선박의 육상 관제 및 원격제어를 위해, 자율운항선박의 비상상황인식 기술 개발에 대한 기초연구를 수행한다. 자율운항선박 주변의 타선들의 이동 경로를 예측하고 이에 따라 자선의 이동경로와 비교하여, 충돌위험 영역을 식별함으로써 비상상황 인식이 가능하도록 한다. 먼저, 타선의 이동경로 예측을 위해서는 선박자동식별시스템 AIS 정보를 바탕으로, 해당 해역에서의 통항패턴을 분석하고 이를 기반으로 타선의 특정 시간 동안의 이동 경로를 예측한다. 예측된 타선의 이동경로와 함께 자선의 이동경로를 비교 분석함으로, 최근 접점 및 최근접점 거리 정보 기반의 충돌위험영역을 식별한다. 식별된 충돌위험영역의 위험도에 따라 육상 관제센터에서는 원격 제어를 통한 위험상황 회피가 가능하도록 활용할 수 있다. 제안된 방법은 AIS에서 얻어지는 실제 항적 데이터를 이용하여 초기 결과를 검증하였다.

  • PDF

AIS 항적 데이터 기반 선박의 충돌 위험 영역 예측에 관한 기초 연구

  • 박정홍;최진우;김혜진
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.181-182
    • /
    • 2021
  • 본 연구에서는 자율운항선박의 원격 관제 및 제어하는 과정에서 원격 운항자에게 사전 충돌 위험 정보를 제공하기 위해 선박자동식별시스템(AIS, Automatic Identification System)의 항적 정보를 토대로 자율운항선박의 운항 경로 상에 잠재된 충돌 위험 영역을 예측하기 위한 기초 연구를 수행하였다. 자율운항선박의 운항 경로 상에 근접한 타선의 AIS 정보에는 기본적으로 선박의 위치, 속도, 침로에 대한 정보가 반영되어 있으므로, 이러한 정보를 토대로 일정 시간 동안 운항 경로를 예측할 수 있다. 그리고 예측한 정보를 기반으로 대표적 충돌 위험 지수인 최근접점(CPA, Closest Point of Approach)과 최근접점 거리(DCPA, Distance to CPA) 정보를 활용하여 충돌 위험 영역을 2차원 공간상에서 예측하였다. 제안된 방법은 실제 AIS 항적 데이터를 활용한 수치 시뮬레이션을 수행하여 초기 결과를 검증하였다.

  • PDF

Linkage of Numerical Analysis Model and Machine Learning for Real-time Flood Risk Prediction (도시홍수 위험도 실시간 표출을 위한 수치해석 모형과 기계학습의 연계)

  • Kim, Hyun Il;Han, Kun Yeun;Kim, Tae Hyung;Choi, Kyu Hyun;Cho, Hyo Seop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.332-332
    • /
    • 2021
  • 도시화가 상당히 이뤄지고 기습적인 폭우의 발생이 불확실하게 나타나는 시점에서 재산 및 인명피해를 야기할 수 있는 내수침수에 대한 위험도가 증가하고 있다. 내수침수에 대한 예측을 위하여 실측강우 또는 확률강우량 시나리오를 참조하고 연구대상 지역에 대한 1차원 그리고 2차원 수리학적 해석을 실시하는 연구가 오랫동안 진행되어 왔으나, 수치해석 모형의 경우 다양한 수문-지형학적 자료 및 계측 자료를 요구하고 집약적인 계산과정을 통한 단기간 예측에 어려움이 있음이 언급되어 왔다. 본 연구에서는 위와 같은 문제점을 해결하기 위하여 단일 도시 배수분구를 대상으로 관측 강우 자료, 1, 2차원 수치해석 모형, 기계학습 및 딥러닝 기법을 적용한 실시간 홍수위험지도 예측 모형을 개발하였다. 강우자료에 대하여 실시간으로 홍수량을 예측할 수 있도록 LSTM(Long-Short Term Memory) 기법을 적용하였으며, 전국단위 강우에 대한 다양한 1차원 도시유출해석 결과를 학습시킴으로써 예측을 수행하였다. 침수심의 공간적 분포의 경우 로지스틱 회귀를 이용하여, 기준 침수심에 대한 예측을 각각 수행하였다. 홍수위험 등급의 경우 침수심, 유속 그리고 잔해인자를 고려한 홍수위험등급 공식을 적용하여 산정하였으며, 이 결과를 랜덤포레스트(Random Forest)에 학습함으로써 실시간 예측을 수행할 수 있도록 개발하였다. 침수범위 및 홍수위험등급에 대한 예측은 격자 단위로 이뤄졌으며, 검증 자료의 부족으로 침수 흔적도를 통하여 검증된 2차원 침수해석 결과와 비교함으로써 예측력을 평가하였다. 본 기법은 특정 관측강우 또는 예측강우 자료가 입력되었을 때에, 도시 유역 단위로 접근이 불가하여 통제해야 할 구간을 실시간으로 예측하여 관리할 수 있을 것으로 판단된다.

  • PDF

Valuing the Risks Created by Road Transport Demand Forecasting in PPP Projects (민간투자 도로사업의 교통수요 예측위험의 경제적 가치)

  • Kim, Kangsoo;Cho, Sungbin;Yang, Inseok
    • KDI Journal of Economic Policy
    • /
    • v.35 no.4
    • /
    • pp.31-61
    • /
    • 2013
  • The purpose of this study is to calculate the economic value of transport demand forecasting risks in the road PPP project. Under the assumption that volatility of the road PPP project value occurs only in regard with uncertainty of traffic volume forecasting, this study calculates the economic value of the traffic forecasting risks in the case of the road PPP project. To that end, forecasted traffic volume is assumed to be a stochastic variable and to follow the Geometric Brownian motion as time passes. In particular, this study attempts to differentiate itself from existing studies that simply use an arbitrary assumption by presenting the application of different traffic volume growth volatility and the rates before and after the ramp-up period. Analysis of the case projects reveals that the risk premium related to traffic volume forecast of the project turns out as 7.39~8.30%, without considering option value-such as minimum revenue guarantee-while the project value volatility caused by transport demand forecasting risks is 17.11%. As the discount rate grows higher, the project value volatility tends to decrease and volatility in project value is always suggested to be larger than that in transport volume influenced by leverage effect due to fixed expenditure. The market value of transport demand forecasting risk-calculated using the project value volatility and risk premium-is analyzed to be between 0.42~0.50, implying that a 1% increase or decrease in the transport amount volatility would lead to a 0.42~0.50% increase or decrease in risk premium of the project.

  • PDF

Development of Urban Inundation Forecasting System in Seoul (서울시 도시침수 예측시스템 개발)

  • Shim, Jea Bum;Kim, Ho Soung;Kim, Kwang Hun;Lee, Byong Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.341-341
    • /
    • 2020
  • 서울시는 '10년, '11년, '18년의 기록적인 호우로 인해 막대한 재산피해를 기록하였다. 이로 인해 서울시는 수재해 최소화 대책의 필요성을 인지하여 방재시설물 확충 등의 구조적 대책과 함께 침수지역 예측, 호우 영향 예보와 관련된 비구조적 대책 수립을 위해 노력하고 있다. 그 일환으로 '18년에 『서울시 강한 비구름 유입경로 및 침수위험도 예측 용역』을 수행하였으며 이를 통해 레이더 기반의 비구름 이동경로 추정 기술, 침수시나리오 기반의 침수위험지역 추정기술 등을 적용한 서울시 도시침수 예측시스템을 개발하였다. 그러나 침수피해에 선제적으로 대응하기 위해서는 실시간으로 예측강우정보를 생산하고 이를 통해 침수위험지역을 추정하는 기술이 필요하다. 이에 본 연구를 통해 예측강우정보 생산 기술 적용, 예측강우정보를 이용한 실시간 침수위험지역 추정 기술 개발을 수행하여 서울시 도시침수 예측시스템을 고도화하였다. 예측강우정보의 경우 현재 기상청에서 광역 단위 호우특보 및 읍면동 단위 동네예보를 통해 제공되고 있지만, 풍수해 업무에 적용하기에는 제한적이며, 실시간 침수위험지역 추정의 경우 침수해석모델의 모의시간, 라이센스 등의 문제로 인해 한계를 보이고 있는 실정이다. 따라서 본 연구에서는 레이더 실황강우정보를 활용한 이류모델 기반의 예측강우정보 생산 기술을 적용하여 풍수해 업무 적용이 용이하도록 하였으며, 예측강우정보를 이용한 최적 침수시나리오 추정 기술 개발을 통해 실시간 침수위험지역 추정이 가능하도록 하였다. 서울시 도시침수 예측시스템은 25개 자치구를 대상으로 강우량, 호우이동경로, 침수 정보를 제공하고 있다. 강우정보는 기상청 및 SK-TechX 기반의 10분 및 1시간 단위 AWS 관측정보, 이류모델 기반 10분 단위 레이더 예측정보, 국지예보모델 기반 1시간 단위 LDAPS 예측정보를 제공하며. 호우이동경로는 레이더 실황강우정보와 LDAPS 바람장을 이용하여 서울시 및 수도권 지역의 10분 단위 1시간 예측경로를 제공한다. 침수정보는 실시간으로 레이더 예측강우정보를 이용하여 최적의 침수시나리오를 추정하여 격자 단위 상세 침수정보와 시군구 단위 침수위험지도를 제공한다. 본 시스템을 통해 실시간 침수위험지역 확인이 가능해짐에 따라 서울시의 효율적인 풍수해 업무 지원이 가능할 것으로 판단된다.

  • PDF

The Potential Driving Behavior Analysis of Novice Driver using a Driving Simulator (차량시뮬레이터를 이용한 초보운전자의 잠재적 운전행동 분석)

  • Lee, Sang-Ro;Kim, Joong-Hyo;Lee, Nam-Yong;Park, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1591-1601
    • /
    • 2013
  • In this study, It is conducted for novice drivers about driving behavior and psychological characteristics analysis to reduce traffic accident risk and provide the basic data of education program development. Therefore, this study classified by the category-specific characteristics and hazard prediction through survey of the novice driver and unpredictable behavior and psychological characteristics were studied. The novice and general characteristics and driving behavior with vehicle simulators, comparison and analysis of the novice driver traffic safety education basic research direction based on the statistical results. Prediction the results of this study, the Hazard of the driver, speeding, traffic violation, information providing omission, abrupt change, the number of accidents in all areas novice driver is high compared to the general driver. In addition, Novice driver showed a statistically significant level of Hazard compared to the general driver target novice drivers and the general ability to predict Hazard of violation, abrupt change, and a number of traffic accidents were omitted level of speeding and other information providing level drivers all showed similar results. Vehicle simulator. The experimental results showed that novice drivers compared to drivers poorly overall driving performance. It showed a notable difference in the number of collisions, especially novice drivers compared to drivers in complex road traffic conditions due to a lack of driving experience and learning ability are considered.

Predicting the Potential Habitat and Risk Assessment of Amaranthus patulus using MaxEnt (Maxent를 활용한 가는털비름(Amaranthus patulus)의 잠재서식지 예측 및 위험도 평가)

  • Lee, Yong Ho;Na, Chea Sun;Hong, Sun Hea;Sohn, Soo In;Kim, Chang Suk;Lee, In Yong;Oh, Young Ju
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.672-679
    • /
    • 2018
  • This study was conducted to predict the potential distribution and risk of invasive alien plant, Amaranthus patulus, in an agricultural area of South Korea. We collected 254 presence localities of A. patulus using field survey and literature search and stimulated the potential distribution area of A. patulus using maximum entropy modeling (MaxEnt) with six climatic variables. Two different kinds of agricultural risk index, raster risk index and regional risk index, were estimated. The 'raster risk index' was calculated by multiplying the potential distribution by the field area in $1{\times}1km$ and 'regional risk index' was calculated by multiplying the potential distribution by field area proportion in the total field of South Korea. The predicted potential distribution of A. patulus was almost matched with actual presence data. The annual mean temperature had the highest contribution for distribution modeling of A. patulus. Area under curve (AUC) value of the model was 0.711. The highest regions were Gwangju for potential distribution, Jeju for 'raster risk index' and Gyeongbuk for 'regional risk index'. This different ranks among the index showed the importance about the development of various risk index for evaluating invasive plant risk.

Hybrid metrics model to predict fault-proneness of large software systems (대형 소프트웨어 시스템의 결함경향성 예측을 위한 혼성 메트릭 모델)

  • Hong, Euy-Seok
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.5
    • /
    • pp.129-137
    • /
    • 2005
  • Criticality prediction models that identify fault-prone spots using system design specifications play an important role in reducing development costs of large systems such as telecommunication systems. Many criticality prediction models using complexity metrics have been suggested. But most of them need training data set for model training. And they are classification models that can only classify design entities into fault-prone group and non fault-prone group. To solve this problem, this paper builds a new prediction model, HMM, using two styled hybrid metrics. HMM has strong point that it does not need training data and it enables comparison between design entities by criticality. HMM is implemented and compared with a well-known prediction model, BackPropagation neural network Model(BPM), considering internal characteristics and accuracy of prediction.

  • PDF