• Title/Summary/Keyword: 위험기반검사

Search Result 99, Processing Time 0.024 seconds

Analysis of Likelihood of Failure for the Corrosion of High Temperature $H_2S/H_2$ through Risk Based-Inspection (위험기반검사에서 고온 $H_2S/H_2$ 부식에 의한 사고발생 가능성 해석)

  • Lee Hern-Chang;Lee Joong-Hee;Kim Tae-Ok
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.2
    • /
    • pp.61-70
    • /
    • 2006
  • The likelihood of failure by the corrosion of high temperature $H_2S/H_2$, which affect to a risk of facilities, was analyzed through the risk based-inspection using API-581 BRD. We found that the corrosion rate was increased as temperature and $H_2S$ concentration were increased. Also, the technical module subfactor(TMSF) was increased as an used you increased, material thickness decreased, inspection number decreased, and inspection effectiveness increased. In these conditions, the maximum value of TMSF was not varied, but the TMSF was sensitively varied at low temperature for high concentration of $H_2S$.

Analysis of Likelihood of Failure for the Stress Corrosion Cracking by Caustic Cracking through the Quantitative Risk Based-Inspection using API-581 BRD (API-581 절차에 의한 정량적 위험기반검사에서 부식성 균열에 의한 응력부식의 사고발생 가능성 해석)

  • Lee, Hern-Chang;Choi, Sung-Kyu;Cho, Ji-Hoon;Ham, Byung-Ho;Kim, Tae-Ok
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.1
    • /
    • pp.65-76
    • /
    • 2007
  • The likelihood of failure for the stress corrosion cracking (SCC) of caustic cracking, which affect to a risk of facilities, was analyzed through the risk based-inspection using API-581 BRD. We found that SCC of the caustic cracking was occurred above 5 % NaOH concentration, and the technical module subfactor (TMSF) was maximized for above 50 % concentration. The heat traced and monitoring were not sensitive to the TMSF with NaOH concentration and temperature. But the steam out was more of less affect minimum value of the TMSF. Also, the inspection number, the inspection effectiveness, and the year since inspection were very sensitive to the TMSF with NaOH concentration and temperature. Therefore, the plan of next inspection will be established with compositively considering those at once.

Analysis of Likelihood of Failure for the Thinning of High Temperature Sulfide and Naphthenic Acid Corrosion through Risk Based Inspection using API-581 (API-581에 의한 위험기반검사에서 고온 황화물 및 나프텐산 부식의 두께감소에 의한 사고발생 가능성 해석)

  • Lee Hern-Chang;Lee Joong-Hee;Kim Tae-Ok
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.4
    • /
    • pp.101-110
    • /
    • 2005
  • The likelihood of failure for the thinning of high temperature sulfide and naphthenic acid corrosion, which affect to a risk of facilities, was analyzed through the risk based inspection using API-581 BRD. We found that the corrosion rate was increased with increasing temperature and total acid number(TAN). And maximum value of the technical module subfactor(TMSF) was not varied with operating condition, but the TMSF was sensitively changed at the range of low temperature, low flow rate, and high TAN. Also, the TMSF was increased as an used year and inspection effectiveness increased, but it was increased as thickness, inspection number, and over design decreased.

Stochastic Remaining Fatigue Life Assessment Considering Crack Inspection Results (균열 검사 결과를 고려한 선체 잔류 피로 수명의 확률론적 예측)

  • Park, Myong-Jin;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In general, an inspection schedule is established based on the long-term fatigue life during the design stage. However, in the design stage, it is difficult to clearly identify the uncertainty factors affecting long-term fatigue life. In this study, the probabilistic fatigue life assessment was conducted in accordance with the methodology of DNV-GL. Firstly, The initial crack distribution estimated through the initial crack propagation analysis was updated by reflecting the results of crack inspection. Secondly, the updated crack distribution was compared with the initial crack distribution, and the probability of failure was updated with the effect of crack inspection.

Design and Implementation of a Rule-based Risk Classification Algorithm for Risk-based Inspection (RBI) of Imported Goods (수입 화물의 위험 기반 검사(RBI)를 위한 규칙 기반 위험 분류 알고리즘의 설계 및 구현)

  • Cha Jooho;Heo Hoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.129-136
    • /
    • 2023
  • In this paper, we describe a rule-based risk classification algorithm to perform Risk-based Inspection (RBI) on imported goods at customs. The RBI system is a method to automatically select which cargos have to be inspected and manage potential risks in boarder. In this study, we designed a rule-based risk classification algorithm for RBI solutions and implemented them using the Svelte web application framework. The risk classification algorithm proposed in this paper uses different indicative risk factors such as HS code, country of origin, importer's reliability, trade relationships, and logistics routes to classify cargos into Green, Yellow, and Red channels. To achieve this, we assigned risk categories to each risk factor and randomly generated risk scores within a specific range for each risk category. This system is expected to contribute to the increased efficiency of customs operations and protect public safety by minimizing the risk of imported hazardous materials.

Radiological Risk Assessment for the Public Under the Loss of Medium and Large Sources Using Bayesian Methodology (베이지안 기법에 의거한 중대형 방사선원의 분실 시 일반인에 대한 방사선 위험도의 평가)

  • Kim, Joo-Yeon;Jang, Han-Ki;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.2
    • /
    • pp.91-97
    • /
    • 2005
  • Bayesian methodology is appropriated for use in PRA because subjective knowledges as well as objective data are applied to assessment. In this study, radiological risk based on Bayesian methodology is assessed for the loss of source in field radiography. The exposure scenario for the lost source presented in U.S. NRC is reconstructed by considering the domestic situation and Bayes theorem is applied to updating of failure probabilities of safety functions. In case of updating of failure probabilities, it shows that 5 % Bayes credible intervals using Jeffreys prior distribution are lower than ones using vague prior distribution. It is noted that Jeffreys prior distribution is appropriated in risk assessment for systems having very low failure probabilities. And, it shows that the mean of the expected annual dose for the public based on Bayesian methodology is higher than the dose based on classical methodology because the means of the updated probabilities are higher than classical probabilities. The database for radiological risk assessment are sparse in domestic. It summarizes that Bayesian methodology can be applied as an useful alternative lot risk assessment and the study on risk assessment will be contributed to risk-informed regulation in the field of radiation safety.

A Study on Implementation of Risk Based Inspection Procedures to a Petrochemical Plant (RBI 절차의 석유화학 플랜트 적용에 관한 연구)

  • Song, Jung-Soo;Shim, Sang-Hoon;Kim, Ji-Yoon;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.416-423
    • /
    • 2003
  • During the last ten years, the need has been increased for reducing maintenance cost for aged equipments and ensuring safety, efficiency and profitability of petrochemical and refinery plants. RBI (Risk Based Inspection) methodology is one of the most promising technologies satisfying the need in the field of integrity management. In this study, a user-friendly software, realRBl for RBI based on the API 581 code was developed. This software has modules for evaluating qualitative and semi-quantitative risk level, analyzing quantitative risks using the potential consequences of a failure of the pressure boundary, and assessing the likelihood of failure. A quantitative analysis was performed for 16 columns in a domestic NCC (Naphtha Cracking Center) plant whose operating time reaches about 12 years. Each column was considered as two equipment parts by dividing into top and bottom. Generic column failure frequencies were adjusted based on likelihood data. After determining release rate, release duration and release mass for each failure scenario, flammable/explosive and toxic consequences were assessed. Current risks for 32 equipment parts were evaluated and risk based prioritization were determined as a final result.

Current status of food safety detection methods for Smart-HACCP system (스마트-해섭(Smart-HACCP) 적용을 위한 식품안전 검시기술 동향)

  • Lim, Min-Cheol;Woo, Min-Ah;Choi, Sung-Wook
    • Food Science and Industry
    • /
    • v.54 no.4
    • /
    • pp.293-300
    • /
    • 2021
  • Food safety accidents have been increasing by 2% over 5,000 cases every year since 2009. Most people know that the best method to prevent food safety accidents is a quick inspection, but there is a lack of inspection technology that can be used at the non-analytic level to food production and distribution sites. Among the recent on-site diagnostic technologies, the methods for testing gene-based food poisoning bacteria were introduced with the STA technology, which can range from sample to detection. If food safety information can be generated without forgery by directly inspecting food hazard factors by remote, unmanned, not human, pollution sources can be managed by predicting risks more accurately from current big-data and artificial intelligence technology. Since this information processing can be used on smartphones using the current cloud technology, it is judged that it can be used for food safety to small food businesses or catering services.

A Study on the Development of Ultrasonography Guide using Motion Tracking System (이미지 가이드 시스템 기반 초음파 검사 교육 기법 개발: 예비 연구)

  • Jung Young-Jin;Kim Eun-Hye;Choi Hye-Rin;Lee Chae-Jeong;Kim Seo-Hyeon;Choi Yu-Jin;Hong Dong-Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1067-1073
    • /
    • 2023
  • Breast cancer is one of the top three most common cancers in modern women, and the incidence rate is increasing rapidly. Breast cancer has a high family history and a mortality rate of about 15%, making it a high-risk group. Therefore, breast cancer needs constant management after an early examination. Among the various equipment that can diagnose cancer, ultrasound has the advantage of low risk and being able to diagnose in real time. In addition, breast ultrasound will be more useful because Asian women's breasts are denser and less sensitive. However, the results of ultrasound examinations vary greatly depending on the technology of the examiner. To compensate for this, we intend to incorporate motion tracking technology. Motion tracking is a technology that specifies and analyzes a location according to the movement of an object in a three-dimensional space. Therefore, real-time control is possible, and complex and fast movements can be recorded in real time. We would like to present the production of an ultrasound examination guide using these advantages.

Application of Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry (Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry의 활용)

  • Pil Seung KWON
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.244-252
    • /
    • 2023
  • The timeliness and accuracy of test results are crucial factors for clinicians to decide and promptly administer effective and targeted antimicrobial therapy, especially in life-threatening infections or when vital organs and functions, such as sight, are at risk. Further research is needed to refine and optimize matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based assays to obtain accurate and reliable results in the shortest time possible. MALDI-TOF MS-based bacterial identification focuses primarily on techniques for isolating and purifying pathogens from clinical samples, the expansion of spectral libraries, and the upgrading of software. As technology advances, many MALDI-based microbial identification databases and systems have been licensed and put into clinical use. Nevertheless, it is still necessary to develop MALDI-TOF MS-based antimicrobial-resistance analysis for comprehensive clinical microbiology characterization. The important applications of MALDI-TOF MS in clinical research include specific application categories, common analytes, main methods, limitations, and solutions. In order to utilize clinical microbiology laboratories, it is essential to secure expertise through education and training of clinical laboratory scientists, and database construction and experience must be maximized. In the future, MALDI-TOF mass spectrometry is expected to be applied in various fields through the use of more powerful databases.