• 제목/요약/키워드: 위해인자

검색결과 3,880건 처리시간 0.05초

빅 데이터 분석 기반 농 식품 위해인자 신속관리 방법 (Rapid Management Mechanism Against Harmful Materials of Agri-Food Based on Big Data Analysis)

  • 박현;강성수;정훈;김세한
    • 한국통신학회논문지
    • /
    • 제40권6호
    • /
    • pp.1166-1174
    • /
    • 2015
  • 단순 바코드 또는 포장 내용물 단위의 이력추적, 농 식품의 저장 창고나 배송차량의 일부 정보 추적, 직감에 의한 원격 환경 조정 등을 통해 농 식품의 위해인자를 차단하려는 노력들이 있었다. 그러나 이러한 시도는 선택적인 정보수집 및 불충분한 정보량, 현실과 수집 시점 간 시간차에 따른 정보 왜곡의 문제점 및 각 유통 기업의 자체 독립적인 정보망으로 인하여 생산지로부터 소비자까지의 총체적인 위해인자 차단이 어렵다. 본 논문에서는 농 식품의 생산지뿐만 아니라 전주기상의 주요 유통 거점, 소비지까지 정형, 반 정형, 비정형의 다양하고 대규모의 농 식품 유통 정보를 이용하여, 위해인자 발생의 실시간 상황이나 예측, 추적을 통하여, 위해인자 파급 차단과 예방을 위한 농 식품의 위해인자 신속 관리 방법을 제안한다. 제안방법은 빅 데이터 클러스터 기반, 실시간으로 정보를 수집하고, 위해인자 상황인지, 위해인자 발생 예측, 위해인자 발생지 추적 분석을 통해 위해인자를 차단하고 파급을 예측하며, 그 결과를 가시화하여 신속하게 위해인자를 관리 할 수 있도록 한다.

Java 프로그램에 대한 복잡도 척도들의 실험적 검증 (An Empirical Validation of Complexity Metrics for Java Programs)

  • 김재웅;유철중;장옥배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권12호
    • /
    • pp.1141-1154
    • /
    • 2000
  • 본 논문에서는 Java 프로그램의 복잡도를 측정하기 위해 필요한 인자들을 제안하였다. 이러한 인자들을 추출하기 위해 Java 프로그램을 분석하여 객체지향 설계 척도 값들을 계산하고 통계적 분석을 수행하였다. 그 결과 기존의 연구에서 발견되었던 클래스의 크기 인자 외에도 메소드 호출 빈도, 응집도, 자식 클래스의 수, 내부 클래스 및 상속 계층의 깊이가 주요 인자임이 파악되었다. 클래스의 크기 척도로 분류되었던 자식 클래스의 수는 다른 크기 척도들과 다른 성질을 가진다는 것을 발견하였다. 또한 프로그램의 크기가 커지고 결합도가 높아질수록 응집도가 떨어진다는 것을 입증하였다. 그리고 인자 분석을 바탕으로 인간의 인지 능력과 인자의 상관관계를 고려한 가중치를 적용하기 위해 인자별로 회귀분석을 수행하였다. 보다 적은 척도를 가지고 인자를 설명할 수 있는 회귀식을 도출하였다. 두 그룹에 대한 교차 검증 결과 회귀식이 높은 신뢰도를 가지는 것으로 나타났다. 따라서 본 논문에서 제안한 인자들을 이용하는 경우 Java 프로그램의 복잡도를 측정할 수 있는 새로운 척도로 사용할 수 있다.

  • PDF

RNN-LSTM 알고리즘을 이용한 하천의 수질인자 예측 (Prediction of Water Quality Factor for River Basin using RNN-LSTM Algorithm)

  • 임희성;안현욱
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.219-219
    • /
    • 2020
  • 하천의 수질을 나타내는 환경지표 중 국가 TMS(Tele Monitoring system)의 수질측정망을 통해 관리되고 있는 지표로는 DO, BOD, COD, SS, TN, TP 등 여러 인자들이 있다. 이러한 수질인자는 하천의 자정작용에 있어 많은 영향을 나타내고 있다. 이를 활용한 경제적이고 합리적인 수질관리를 위해 하천의 자정작용을 활용하는 것이 중요하다. 생물학적 작용을 가장 효과적으로 활용하기 위해서는 수질오염 데이터에 기초한 수질예측을 채택하여 적절한 대책이 필요하다. 이를 위해서는 수질인자의 데이터를 측정하고 축적해 수질오염을 예측하는 것이 필수적인데, 실제적으로 수질인자의 일일 측정은 비용 관점에서 쉽게 접근할 수 없다. 본 연구에서는 시계열 학습으로 알려진 RNN-LSTM(Recurrent Neural Network-Long Term Memory) 알고리즘을 활용하여 기존에 측정된 수질인자의 데이터를 통해 시간당 및 일일 수질인자를 예측하려고 했다. 연구에 앞서, 기존에 시간단위로 측정된 수질인자 데이터의 이상 유무를 확인 후, 에러값은 제거하고 12시간 이하 데이터가 누락되었을 때는 선형 보간하여 데이터를 사용하고, 1일 데이터도 10일 이하 데이터가 누락되었을 때 선형 보간하여 데이터를 활용하여 수질인자를 예측하였다. 수질인자를 예측하기 위해 구글이 개발한 딥러닝 오픈소스 라이브러리인 텐서플로우를 활용하였고, 연구지역으로는 대한민국 부산에 위치한 온천천의 유역을 선정하였다. 수질인자 데이터 수집은 부산광역시에서 운영하는 보건환경정보 공개시스템의 자료를 활용하였다. 모델의 연구를 위해 하천의 수질인자, 기상자료 데이터를 입력자료로 활용하였다. 분석에서는 입력자료와, 반복횟수, 시계열의 길이 등을 조절해 수질 요인을 예측했고, 모델의 정확도도 분석하였다.

  • PDF

머신러닝 및 딥러닝을 활용한 강우침식능인자 예측 평가 (Evaluation of Rainfall Erosivity Factor Estimation Using Machine and Deep Learning Models)

  • 이지민;이서로;이관재;김종건;임경재
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.450-450
    • /
    • 2021
  • 기후변화 보고서에 따르면 집중 호우의 강도 및 빈도 증가가 향후 몇 년동안 지속될 것이라 제시하였다. 이러한 집중호우가 빈번히 발생하게 된다면 강우 침식성이 증가하여 표토 침식에 더 취약하게 발생된다. Universal Soil Loss Equation (USLE) 입력 매개 변수 중 하나인 강우침식능인자는 토양 유실을 예측할때 강우 강도의 미치는 영향을 제시하는 인자이다. 선행 연구에서 USLE 방법을 사용하여 강우침식능인자를 산정하였지만, 60분 단위 강우자료를 이용하였기 때문에 정확한 30분 최대 강우강도 산정을 고려하지 못하는 한계점이 있다. 본 연구의 목적은 강우침식능인자를 이전의 진행된 방법보다 더 빠르고 정확하게 예측하는 머신러닝 모델을 개발하며, 총 월별 강우량, 최대 일 강우량 및 최대 시간별 강우량 데이터만 있어도 산정이 가능하도록 하였다. 이를 위해 본 연구에서는 강우침식능인자의 산정 값의 정확도를 높이기 위해 1분 간격 강우 데이터를 사용하며, 최근 강우 패턴을 반영하기 위해서 2013-2019년 자료로 이용했다. 우선, 월별 특성을 파악하기 위해 USLE 계산 방법을 사용하여 월별 강우침식능인자를 산정하였고, 국내 50개 지점을 대상으로 계산된 월별 강우침식능인자를 실측 값으로 정하여, 머신러닝 모델을 통하여 강우침식능인자 예측하도록 학습시켜 분석하였다. 이 연구에 사용된 머신러닝 모델들은 Decision Tree, Random Forest, K-Nearest Neighbors, Gradient Boosting, eXtreme Gradient Boost 및 Deep Neural Network을 이용하였다. 또한, 교차 검증을 통해서 모델 중 Deep Neural Network이 강우침식능인자 예측 정확도가 가장 높게 산정하였다. Deep Neural Network은 Nash-Sutcliffe Efficiency (NSE) 와 Coefficient of determination (R2)의 결과값이 0.87로서 모델의 예측성을 입증하였으며, 검증 모델을 테스트 하기 위해 국내 6개 지점을 무작위로 선별하여 강우침식능인자를 분석하였다. 본 연구 결과에서 나온 Deep Neural Network을 이용하면, 훨씬 적은 노력과 시간으로 원하는 지점에서 월별 강우침식능인자를 예측할 수 있으며, 한국 강우 패턴을 효율적으로 분석 할 수 있을 것이라 판단된다. 이를 통해 향후 토양 침식 위험을 지표화하는 것뿐만 아니라 토양 보전 계획을 수립할 수 있으며, 위험 지역을 우선적으로 선별하고 제시하는데 유용하게 사용 될 것이라 사료된다.

  • PDF

토양오염 위해성평가를 위한 국가별 노출인자 비교분석 및 국내 노출인자 연구 (Comparative Study on Exposure Factors for Risk Assessment in Contaminated Lands and Proposed Exposure Factors in Korea)

  • 안윤주;이우미
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제12권1호
    • /
    • pp.64-72
    • /
    • 2007
  • 토양매체중의 오염물질들은 다양한 경로를 통해 인체나 생태계에 노출되어 위해성 문제를 유발하고 있다. 토양위해성평가(Soil Risk Assessment)는 토양오염물질로 인한 악영향의 개연성을 정량적으로 평가하는 과정으로, 유해성 확인(Hazard Identification), 용량-반응평가(Dose-Response Assessment), 노출평가(Exposure Assessment), 그리고 위해도 결정(Risk Characterization)의 4가지 단계적 과정으로 이루어진다. 이중 노출평가과정에서 매우 중요하게 작용하는 노출인자(Exposure Factor)는 토양오염물질의 인체노출량을 산정하는데 필수적인 요소로, 미국, 유럽국가 등 선진국에서는 나라별 상황에 적절한 노출인자를 사용하고 있으나, 우리나라는 아직 국내에 적용하기 적합한 노출 인자에 대한 연구가 매우 부족한 실정이다. 본 연구에서는 토양오염 위해성평가를 위한 국가별 노출인자를 비교분석하고, 이를 토대로 국내상황에 적용가능한 노출인자를 제시하였다. 국가별 노출인자 연구는 미국 Environmental Protection Agency, 영국 Environmental Agency, 네덜란드 RIVM, 호주, 그리고 독일에서 적용되고 있는 노출인자값에 대해 노출인자별로 총괄적인 비교분석을 수행하였다. 또한 국가별 비교분석연구와 국내에서 제시된 노출인자 자료를 종합하여, 국내자료가 없는 경우 외국에서 보편적으로 적용하고 있는 인자값을 국내 적용 타당성을 고려하여 제시하였다. 본 연구에서 고려된 노출인자 조사항목은 평균수명, 노출기간, 노출빈도, 체중, 체표면적(또는 노출체표면적), 피부흡수계수(Skin Absorption Factor), 토양-피부간 흡착계수(Soil-Skin Adherence Factor), 음용수 섭취량, 호흡률, 토양 섭취량 그리고 농작물 섭취량 등이다. 본 연구는 오염토양의 위해성평가를 수행할 때 국내 상황을 고려한 노출평가에 필요한 기반연구가 될 것이다.

하천 중심의 제방붕괴 위험인자 평가 (Evaluation of risk factor for levee break based on river)

  • 김상호;황신범;현진섭
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.852-852
    • /
    • 2012
  • 태풍이나 국지성 집중호우로 인해 하천에서 발생하는 재해는 제방이 붕괴되면서 제내지가 침수되거나 제방의 설계빈도를 초과하는 강우로 인해 하도 홍수량이 제방을 월류하는 경우와 하천에 설치되어 있는 수공구조물이 피해를 입거나 구조물로 인한 주변이 침수되는 경우 등 수많은 재해 양상이 있다. 본 연구에서는 하천에서 수해를 유발하게 되는 여러 가지 원인들 가운데 하천 중심에서 중요도를 판단하여 위험인자를 평가하고자 한다. 이를 위해 10개의 대상인자들을 선정하여 기하학적 인자, 수리학적 인자, 수공구조물 그리고 정성적 인자로 구분하였으며, 세부 인자들에 대해 재해 유발과 관련된 중요도를 조사하기 위해 수자원분야 전문가를 포함한 다양한 분야의 전문가들을 대상으로 설문을 실시하였다. 설문결과를 토대로 인자들에 대한 가중치를 설정하였으며, 이를 주요 하천에 적용하여 하천별로 제방붕괴와 관련된 위험인자에 대한 영향을 검토하였다.

  • PDF

인공신경망 모델을 이용한 지천유입이 있는 대하천의 수질예측 (Prediction of Water Quality in Large Rivers with Tributary Input using Artificial Neural Network Model)

  • 서일원;윤세훈;정성현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.45-45
    • /
    • 2018
  • 오염물의 혼합거동을 해석하기 위해 물리기반 모델을 이용하는 경우 모델을 구축하고 운용하는데 많은 시간과 재정이 소요되며 현장검증을 통한 검증이 반드시 필요하다. 하지만 데이터 기반 모델의 경우 축적된 데이터만으로도 예측을 수행할 수 있으며 물리기반모델에 비해 결정해야할 입력인자가 적어 모델운용이 용이하다는 장점이 있다. 다양한 데이터 모델 중 인공신경망(ANN) 모델은 데이터가 가지는 불확실성 및 비정상성, 복잡한 상호관련성에 효과적으로 대응할 수 있는 모델로 수자원 및 환경 분야에서 자주 사용되고 있다. 본 연구에서는 인공신경망 모델을 이용하여 지천유입이 있는 대하천의 수질인자 (pH, 전기전도도, DO, chl-a)를 예측하였다. 다른 데이터기반 모델과 같이 인공신경망 모델 또한 수집된 데이터 질에 크게 영향을 받으며, 내부 입력인자의 선택이 모델의 예측 결과에 큰 영향을 미친다. 이러한 인공신경망 모델의 특성을 바탕으로 예측모형의 정확도를 향상하기 위해서는 크게 데이터 처리부분과 모델구축 부분에서의 접근이 필요하다. 본 연구에서는 데이터 처리 과정에서 연구대상지점의 각각의 수질인자가 가지는 분포 특성을 유지하기 위해 층화표츨추출법을 이용하여 데이터를 구성하였다. 모델의 구축 과정에서는 초기가중치 값의 영향을 줄이기 위해 앙상블기법을 사용하였으며, 좀 더 견고하고 정확한 결과를 예측하기 위해 탄력적 역전파알고리즘을 추가하였다. 추가적으로 합류 후 본류의 미 계측지역 수질 예측 정확도 향상을 위해 본류의 수질인자뿐만 아니라 지류의 수질인자를 입력자료로 사용하여 모의를 수행하였다. 또한 동일 구간에서 수행한 현장추적자실험 자료를 이용하여 수질인자의 분포특성을 비교, 검증하였다. 개발된 모델을 이용하여 낙동강과 금호강 합류부 하류의 수질인자를 예측한 결과 지류의 수질인자를 입력자료로 추가한 경우 예측의 정확도가 증가하였으며, 현장실험 자료를 통해 밝혀진 오염물의 거동현상을 인공신경망 모델로도 동일하게 재현하는 것으로 나타났다. 본 연구에서 제안한 인공신경모델을 이용한다면 물리기반 수치모델을 대체하여 지천으로 유입된 오염물의 거동을 정확하고 효율적으로 파악할 수 있을 것이다.

  • PDF

월단위 토양유실량 산정을 위한 식생피복인자 산정 방안 연구 (A Study to Develop Monthly C Factor Database for Monthly Soil Loss Estimation)

  • 성윤수;금동혁;임경재;김종건;박윤식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.279-279
    • /
    • 2017
  • 토양유실로 인해 발생된 토사는 강우 유출수와 함께 하류로 흘러들어 하천 및 호소의 탁수문제를 야기시킨다. 토양유실에 관한 현황을 파악하기 위해서는 유역 내 토지이용현황과 피복되어 있는 작물 등의 현황조사와 더불어 유역 내 발생되는 토양유실량에 대한 장기모니터링을 수행할 필요가 있다. 하지만 유역 내 발생되는 토양유실량에 대한 장기모니터링을 수행하기에는 많은 시간과 인력이 필요하므로 토양유실량 산정 및 유사거동특성을 계산하는 모형을 활용한 연구가 국내외 많은 연구자들에 의해 수행되고 있다. 토양유실량을 산정하는 모형 중 가장 많이 사용되고 있는 범용토양유실량산정공식(Universal Soil Loss Equation, USLE)은 5개의 인자를 사용하여 연평균 토양유실량을 산정한다. 국내의 경우 환경부에서 제정한 '표토의 침식 현황 조사에 관한 고시'에 표토침식현황을 조사하는 방법으로 USLE 공식을 사용한다. USLE 모형을 구성하는 인자 중 식생피복인자는 작물의 생육과정에 따른 변화를 고려하지 않고 작물에 대한 획일적인 값을 제시하고 있어 밭에서 발생되는 정확한 토양유실현황을 예측하는데 한계가 있다, 따라서 본 연구에서는 국내에서 사용하는 USLE 모형의 구성인자인 식생피복인자의 한계점을 인식하고 이를 유역별 월단위 인자값으로 산정하는 방법을 제시하기 위해 국내의 4대상 유역 중 대청호 유역, 소양호 유역, 주암호 유역, 임하호 유역을 선정하여 각 유역의 기후 및 지역특성을 고려한 식생피복인자를 제안하였다. 월단위 식생피복인자를 제안하기 위해 SWAT모형을 사용하여 일단위 식생피복인자를 출력하도록 모형을 구성하였으며, 구축된 인자의 지역적 한계를 보완하기 위해 4대강 유역에 대한 작물 재배일정을 조사하여 모형에 반영하여 모의하였다. 모의 결과 산정된 월단위 식생피복 인자는 모든 작물에 대해 작물이 파종되는 시점에서 수확되기까지 점차 감소하는 경향을 보였으며, 작물에 따라서 그리고 동일한 작물일지라도 유역에 따라 다소 차이가 있는 것으로 확인되었다. 따라서 본 연구를 통해 제안된 월단위 식생피복인자는 토양유실에 직접적인 영향을 주는 지표피복변화를 고려한 식생피복인자로써 정확한 토양유실량을 산정하는데 기여할 것으로 판단된다.

  • PDF

인공위성용 능동가압형 추진제 탱크의 응력 해석 (Stress Analysis of Pressurization Type Propellant Tank in the Satellite)

  • 한근조;심재준;최진철
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1997년도 제9회 학술강연회논문집
    • /
    • pp.21-21
    • /
    • 1997
  • 인공위성용 추진제 탱크를 개발하기 위해 여러 설계인자를 설정하여 각 인자가 탱크벽면에 미치는 응력분포 영향을 구하고, 또한 최적의 인자 값을 구하기 위해 각 인자의 변화에 따라서 구조해석을 수행하였다. 탱크 지지부 위치와 탱크 벽면 두께 변화에 따른 탱크 벽면에 미치는 응력분포 영향을 고찰하기 위해 1/4 모델을 설정하였고, 연료배출구의 위치변화(경사각돈)에 따른 응력분포는 1/2 모델을 설정하여 해석을 하였다. 탱크에 작용하는 하중은 연료압력에 의해 발생하는 정하중(350 psi)을 가하며 또한, 발사 시 발사체로부터 전달되는 최대동하중(llg)을 고려하였다. 그리고, 탱크가 인공위성에 장착될 때에 발생하는 다양한 장착조건에 대해서 구조해석을 수행하였고, 추진제 배출구 각도가 $0^{\circ}$ 에서 $25^{\circ}C$까지 변화할 때 탱크 벽면에 미치는 응력분포 영향을 구했다. 그래서 각 조건에서 구한 상당응력분포와 인자의 최적 값은 추진제 탱크를 설계하기 위한 기초적인 자료로 활용하고자 한다.

  • PDF

식생변화가 토양수분에 미치는 영향 분석 (Analysis of Soil Moisture Variability Due to the Vegetation Index)

  • 최민하;허유미;김현우;김태웅
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2011년도 정기 학술발표대회
    • /
    • pp.107-107
    • /
    • 2011
  • 최근 기후변화로 야기되는 식생의 변화는 수문기상인자인 증발산과 토양수분에 많은 영향을 끼친다. 본 연구의 목적은 식생의 변화가 수문기상인자인 토양수분에 어떠한 영향을 미치는지 분석하고자 하는데 있다. 식생인자와 수문기상 인자와의 상관관계를 알아보기 위해 Moderate Resolution Imaging Spectroradiometer(MODIS) 위성 이미지 데이터를 연구에 적용하였으며, 식생인자는 MODIS 13 Vegetation Indices Product에서 추출한 정규식생지수 Normalized Difference Vegetation Index(NDVI)를 이용하였다. 식생인자와 토양수분의 상관관계를 분석하기 위해 농업기상정보시스템(Rural Development Administration, RDA)에서 측정한 군위, 논산, 옥천, 예산 지역의 토양수분 관측값 및 Aqua 위성에 탑재된 Advanced Microwave Scanning Radiometer E(AMSR-E)를 이용하여 측정한 토양수분 관측값을 MODIS-NDVI와 비교 분석하였다. 식생인자와 수문기상인자의 시계열 자료를 이용하여 변화하는 양상을 알아내고자 하였고 상관성을 분석하여 식생인자가 수문인자에 어떠한 영향을 주는지 파악하였다. 그 결과 RDA 토양수분 관측값은 MODIS-NDVI와 거의 비슷한 경향을 나타남을 확인 할 수 있었으며, 이는 RDA와 AMSR-E의 토양수분의 관측 깊이에 따른 차이로 이 같은 현상이 나타난다고 사료된다, 또한 MODIS-NDVI, AMSR-E, RDA가 가지고 있는 각기 다른 공간 해상도(1km, 25km, point scale)가 반영된 결과라 할 수 있겠다, 추후 이를 보완한다면 보다 식생변화가 토양수분에 미치는 영향분석을 명확히 할 수 있을 것이다.

  • PDF