• Title/Summary/Keyword: 위해도분석

Search Result 10,175, Processing Time 0.042 seconds

Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images (딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지)

  • Youngmin Seo;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1413-1425
    • /
    • 2023
  • The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, accurate estimation of the areas affected by wildfires is fundamental. Satellite remote sensing is used for forest fire detection because it can rapidly acquire topographic and meteorological information about the affected area after forest fires. In addition, deep learning algorithms such as convolutional neural networks (CNN) and transformer models show high performance for more accurate monitoring of fire-burnt regions. To date, the application of deep learning models has been limited, and there is a scarcity of reports providing quantitative performance evaluations for practical field utilization. Hence, this study emphasizes a comparative analysis, exploring performance enhancements achieved through both model selection and data design. This study examined deep learning models for detecting wildfire-damaged areas using Landsat 8 satellite images in California. Also, we conducted a comprehensive comparison and analysis of the detection performance of multiple models, such as U-Net and High-Resolution Network-Object Contextual Representation (HRNet-OCR). Wildfire-related spectral indices such as normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as input channels for the deep learning models to reflect the degree of vegetation cover and surface moisture content. As a result, the mean intersection over union (mIoU) was 0.831 for U-Net and 0.848 for HRNet-OCR, showing high segmentation performance. The inclusion of spectral indices alongside the base wavelength bands resulted in increased metric values for all combinations, affirming that the augmentation of input data with spectral indices contributes to the refinement of pixels. This study can be applied to other satellite images to build a recovery strategy for fire-burnt areas.

GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor (GOCI-II 기반 저염분수 산출과 태풍 힌남노에 의한 시간별 염분 변화)

  • So-Hyun Kim;Dae-Won Kim;Young-Heon Jo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2023
  • The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK-2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.

Characteristics of Leuconostoc spp. isolated from radish kimchi and its immune enhancement effect (무김치에서 분리한 Leuconostoc 속의 특성과 면역증강 효과)

  • Seoyeon Kwak;Seongeui Yoo;Jieon Park;Woosoo Jeong;Hee-Min Gwon;Soo-Hwan Yeo;So-Young Kim
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.1082-1094
    • /
    • 2023
  • The purpose of this study was to examine the characteristics of Leuconostoc spp. isolated from radish kimchi and to investigate the potential for the use of functional ingredients by evaluating enzymatic characteristics, safety, and immune-enhancing effects among the isolates, including Lactobacillus rhamnosus ATCC53103 (LGG) as a control strain. All test strains exhibited β-glucosidase enzyme activity that releases β-1,4 sugar chain bonds. In addition, as a result of antibiotic resistance assay among the isolates, MIC values on 8 antibiotics were below compared to the EFSA standard, and hemolytic experiments confirmed that all showed gamma hemolysis without hemolytic ability. As a result of the antibacterial activity experiment, the Leu. mesenteroides K2-4 strain showed a higher activity than LGG against Bacillus cereus and Staphylococcus aureus. Additionally, the activity of the NF-kB/AP-1 transcription factor increased when the isolates were treated in macrophage RAW cells. These results were related to increasing the high mRNA expression levels on TNF-α and IL-6 by Leu. mesenteroides K2-4 strain to be treated at low concentration. Consequently, we suggest that it will be useful as a candidate for functional food ingredients.

A Study on the Digital Drawing of Archaeological Relics Using Open-Source Software (오픈소스 소프트웨어를 활용한 고고 유물의 디지털 실측 연구)

  • LEE Hosun;AHN Hyoungki
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.82-108
    • /
    • 2024
  • With the transition of archaeological recording method's transition from analog to digital, the 3D scanning technology has been actively adopted within the field. Research on the digital archaeological digital data gathered from 3D scanning and photogrammetry is continuously being conducted. However, due to cost and manpower issues, most buried cultural heritage organizations are hesitating to adopt such digital technology. This paper aims to present a digital recording method of relics utilizing open-source software and photogrammetry technology, which is believed to be the most efficient method among 3D scanning methods. The digital recording process of relics consists of three stages: acquiring a 3D model, creating a joining map with the edited 3D model, and creating an digital drawing. In order to enhance the accessibility, this method only utilizes open-source software throughout the entire process. The results of this study confirms that in terms of quantitative evaluation, the deviation of numerical measurement between the actual artifact and the 3D model was minimal. In addition, the results of quantitative quality analysis from the open-source software and the commercial software showed high similarity. However, the data processing time was overwhelmingly fast for commercial software, which is believed to be a result of high computational speed from the improved algorithm. In qualitative evaluation, some differences in mesh and texture quality occurred. In the 3D model generated by opensource software, following problems occurred: noise on the mesh surface, harsh surface of the mesh, and difficulty in confirming the production marks of relics and the expression of patterns. However, some of the open source software did generate the quality comparable to that of commercial software in quantitative and qualitative evaluations. Open-source software for editing 3D models was able to not only post-process, match, and merge the 3D model, but also scale adjustment, join surface production, and render image necessary for the actual measurement of relics. The final completed drawing was tracked by the CAD program, which is also an open-source software. In archaeological research, photogrammetry is very applicable to various processes, including excavation, writing reports, and research on numerical data from 3D models. With the breakthrough development of computer vision, the types of open-source software have been diversified and the performance has significantly improved. With the high accessibility to such digital technology, the acquisition of 3D model data in archaeology will be used as basic data for preservation and active research of cultural heritage.

Effect of Service Convenience on the Relationship Performance in B2B Markets: Mediating Effect of Relationship Factors (B2B 시장에서의 서비스 편의성이 관계성과에 미치는 영향 : 관계적 요인의 매개효과 분석)

  • Han, Sang-Lin;Lee, Seong-Ho
    • Journal of Distribution Research
    • /
    • v.16 no.4
    • /
    • pp.65-93
    • /
    • 2011
  • As relationship between buyer and seller has been brought closer and long-term relationship has been more important in B2B markets, the importance of service and service convenience increases as well as product. In homogeneous markets, where service offerings are similar and therefore not key competitive differentiator, providing greater convenience may enable a competitive advantage. Service convenience, as conceptualized by Berry et al. (2002), is defined as the consumers' time and effort perceptions related to buying or using a service. For this reason, B2B customers are interested in how fast the service is provided and how much save non-monetary cost like time or effort by the service convenience along with service quality. Therefore, this study attempts to investigate the impact of service convenience on relationship factors such as relationship satisfaction, relationship commitment, and relationship performance. The purpose of this study is to find out whether service convenience can be a new antecedent of relationship quality and relationship performance. In addition, this study tries to examine how five-dimensional service convenience constructs (decision convenience, access convenience, transaction convenience, benefit convenience, post-benefit convenience) affect customers' relationship satisfaction, relationship commitment, and relationship performance. The service convenience comprises five fundamental components - decision convenience (the perceived time and effort costs associated with service purchase or use decisions), access convenience(the perceived time and effort costs associated with initiating service delivery), transaction convenience(the perceived time and effort costs associated with finalizing the transaction), benefit convenience(the perceived time and effort costs associated with experiencing the core benefits of the offering) and post-benefit convenience (the perceived time and effort costs associated with reestablishing subsequent contact with the firm). Earlier studies of perceived service convenience in the industrial market are none. The conventional studies that have dealt with service convenience have usually been made in the consumer market, or they have dealt with convenience aspects in the service process. This service convenience measure for consumer market can be useful tool to estimate service quality in B2B market. The conceptualization developed by Berry et al. (2002) reflects a multistage, experiential consumption process in which evaluations of convenience vary at each stage. For this reason, the service convenience measure is good for B2B service environment which has complex processes and various types. Especially when categorizing B2B service as sequential stage of service delivery like Kumar and Kumar (2004), the Berry's service convenience measure which reflect sequential flow of service deliveries suitable to establish B2B service convenience. For this study, data were gathered from respondents who often buy business service and analyzed by structural equation modeling. The sample size in the present study is 119. Composite reliability values and average variance extracted values were examined for each variable to have reliability. We determine whether the measurement model supports the convergent validity by CFA, and discriminant validity was assessed by examining the correlation matrix of the constructs. For each pair of constructs, the square root of the average variance extracted exceeded their correlations, thus supporting the discriminant validity of the constructs. Hypotheses were tested using the Smart PLS 2.0 and we calculated the PLS path values and followed with a bootstrap re-sampling method to test the hypotheses. Among the five dimensional service convenience constructs, four constructs (decision convenience, transaction convenience, benefit convenience, post-benefit convenience) affected customers' positive relationship satisfaction, relationship commitment, and relationship performance. This result means that service convenience is important cue to improve relationship between buyer and seller. One of the five service convenience dimensions, access convenience, does not affect relationship quality and performance, which implies that the dimension of service convenience is not important factor of cumulative satisfaction. The Cumulative satisfaction can be distinguished from transaction-specific customer satisfaction, which is an immediate post-purchase evaluative judgment or an affective reaction to the most recent transactional experience with the firm. Because access convenience minimizes the physical effort associated with initiating an exchange, the effect on relationship satisfaction similar to cumulative satisfaction may be relatively low in terms of importance than transaction-specific customer satisfaction. Also, B2B firms focus on service quality, price, benefit, follow-up service and so on than convenience of time or place in service because it is relatively difficult to change existing transaction partners in B2B market compared to consumer market. In addition, this study using partial least squares methods reveals that customers' satisfaction and commitment toward relationship has mediating role between the service convenience and relationship performance. The result shows that management and investment to improve service convenience make customers' positive relationship satisfaction, and then the positive relationship satisfaction can enhance the relationship commitment and relationship performance. And to conclude, service convenience management is an important part of successful relationship performance management, and the service convenience is an important antecedent of relationship between buyer and seller such as the relationship commitment and relationship performance. Therefore, it has more important to improve relationship performance that service providers enhance service convenience although competitive service development or service quality improvement is important. Given the pressure to provide increased convenience, it is not surprising that organizations have made significant investments in enhancing the convenience aspect of their product and service offering.

  • PDF

Study on the Relationships Among Perceived Shopping Values, Brand Equity, and Store Loyalty of Korean and Chinese Consumers: A Case of Large Discount Store (한국과 중국 소비자의 쇼핑 경험가치 지각과 브랜드자산 및 점포충성도의 관계에 관한 비교 연구: 대형 할인점을 중심으로)

  • Hwang, Soonho;Oh, Jongchul;Yoon, Sungjoon
    • Asia Marketing Journal
    • /
    • v.14 no.2
    • /
    • pp.209-237
    • /
    • 2012
  • 1. Research Purpose Consumers rely on various clues to evaluate their decision to patronize a retail store, and store brand is one of them (Dodds 1991; Grewal et al. 1998). As consumers find ever increasing variety of contact points connecting them to specific store, the value of experiential shopping as a means of increasing store's brand equity warrants greater attention from scholars of retail management. Retail shopping values are credited for creating not only cognitive experiences like brand knowledge but also emotional experiences such as shopping pleasure and pride (Schmitt 1999). This may be because today's consumers place emphasis on emotional values associated with shopping pleasure, lifestyle brought to life, brand relationship, and store atmosphere more than utilitarian values such as product quality and price. Many previous literature found this to be true (Ahn and Lee 2011; Mathwick et al. 2001). This brings forth important research issues and questions regarding the roles of shopping experiential values and brand equity with regard to consumer's retail patronage choice. However, despite this importance, research on this area remains quite inadequate (Hwang 2010). For this reason, this study aims to verify the relationships among experiential shopping values, retail store brand equity and tries to link that with customer loyalty by surveying large-scale discount store shoppers in Korea and China. 2. Research Contents In order to carry out the research objective, this study conducted comprehensive literature survey on previous literature by discussing major findings and implications with regard to shopping values and retail brand equity and store loyalty. For data collection, researcher employed survey-based research method where data were collected in two major cities of Korea (Seoul) and China (Bejing) and sampling frame was based on patrons of large discount stores in both countries. Specific research questions raised in this study are as follows; RQ1: How do Korean and Chinese consumers differently perceive of shopping values regarding shopping at large-sclae discount stores? RQ2: Are there differences in consumers' emotional consumption propensities? RQ3: Do Korean and Chinese consumers display different perceptions of brand equity towards large-scale discount stores? RQ4: Are there differences in relationships between shopping values and brand equity for Korean and Chinese consumers? For statistical analysis, SPSS17.0, AMOS17.0 and SmartPLS were employed. 3. Research Results The data collected through face-to-face survey conducted in Seoul and Bejing revealed appropriate data validity and reliability as a result of exploratory/confirmatory factor analysis and reliability tests, andh SEM model yielding satisfactory model fitness. The result of the study may be summarized by three main points. First, as a result of testing differences in consumption dispositions, Chinese consumers showed higher scores in aesthetic and symbolic dispositions, whereas Korean consumers scored higher in hedonic disposition. Second, testing on perceptions toward brand equity of large discount stores showed that Korean consumers exhibited more positive perceptions of brand awareness and brand image than Chinese counterparts. Third, the result of exploratory factor analysis on the experiential shopping values revealed different factors for each country. On Korean side, consumer interest value, aesthetic value, and hedonic value were prominent, whereas on Chinese side, hedonic value, aesthetic value, consumer interest value, and service excellence value were found salient. 4. Research Implications While many previous studies on inter-country differences in retailing area mainly focused on cultural dispositions or orientations to explain the differences, this study sets itself apart by specifically targeting individual consumer's shopping values from an experiential viewpoint. The study result provides important theoretical as well as practical implications for large-scale discount store, especially the impotance of fully exploring the linkage between shopping values and brand equity, which has significant influence on loyalty. Therefore, the specific implications deriving from the result shed some important insights upon the consumption values based on shopping experiences and brand equity. The differences found in store shoppers between the two countries may also provide useful insights for Korean and Chinese retailers who plan to expand their operations globally. Related strategic implications derived from this study is the importance of localizing retail strategy which is based on the differences found in experiential shopping values between the two country groups. Especially the finding that Chinese consumers value consumer interest and service excellence, whereas Koreans place importance on hedonic or aesthetic values indicates the need to differentiate the consumer's psychographical profiles when it comes to expanding retail operations globally. Particularly important will be to pursue price-orienated strategy in China in consideration of the high emphasis on consumer interests and service excellence, but to emphasize the symbolic aspects of brand equity in Korea by maximizing the brand equity associated with aesthetic values and hedonic orientations. 5. Recommendations This study focused on generic retail branded discount stores in both countries, thus making it difficult to tease out store-specific strategies based on specific retail brands. Future studies may benefit fro employing actual brand names in survey questionnaire to verify relationship between shopping values and brand-based store strategy. As with other studies of this nature, this study needs to strengthen the result's generalizability by selecting respondents from a wider spectrum of respondents.

  • PDF

A Clinical Study of Hospitalized Infants 28 to 90 Days of Age with Fever without Source (원인 없는 열로 입원한 생후 28일에서 90일 사이 영아들에 대한 임상적 고찰)

  • Rye, Min Hyuk;Noh, Yn Il;Lee, Seong Hun;Lee, Sun Young;Hur, Nam Jin;Lee, Dong Jin
    • Pediatric Infection and Vaccine
    • /
    • v.8 no.2
    • /
    • pp.191-198
    • /
    • 2001
  • Purpose : The purpose of this study was to investigate clinical features of hospitalized infants 28~90 days of age with fever without source and to analyze those of young febrile infants using risk criteria for serious bacterial infection. Methods : The clinical features of 131 infants 28~90 days of age admitted to the Ulsan Dong-Kang General Hospital Pediatric Department because of fever(temperature ${\geq}38^{\circ}C$ rectally) without source, from January 2000 to December 2000, were investigated by retrospective chart review. The clinical features of 131 febrile infants were analyzed using Rochester criteria. Results : Among 131 cases, there were 60 cases(45.8%) of urinary tract infection, 33 cases (25.2%) of aseptic meningitis, 2 cases(1.5%) of bacteremia and 36 cases(27.5%) of no specific diagnosis. Among 131 cases, there were 57 cases(43.5%) in low risk group and 74 cases(56.5%) in not low risk one by Rochester criteria. A significant difference in the incidence of urinary tract infection, aseptic meningitis and no specific diagnosis was not found between both groups. Male to female ratio was 1.8 : 1. Sex ratio between both groups was not significantly different. Most febrile infant were noted in spring(35.1%) and the summer(36.7%). The peak incidence of aseptic meningitis was noted in May and June. The fever subsided mostly within 48~72 hours after administering antimicrobial agents(61.8~83.2%). A significant difference in duration of fever after administering antimicrobial agents was not found between both groups. Conclusion : A selected group of low risk infants 28~90 days of age with fever without source can be managed as outpatients provided that a thorough initial evaluation is performed, that parents can reliably monitor their infant closely at home and that careful follow up can be assured. Because bag collected specimens were more likely to yield indeterminate urine culture result, a suprapubic or catheter obtained urine specimen for culture is a necessary part of the evaluation of all febrile infants 28~90 days of age. The further prospective study on evaluation and management of young febrile infant should be performed in our hospital.

  • PDF

An Intelligence Support System Research on KTX Rolling Stock Failure Using Case-based Reasoning and Text Mining (사례기반추론과 텍스트마이닝 기법을 활용한 KTX 차량고장 지능형 조치지원시스템 연구)

  • Lee, Hyung Il;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.47-73
    • /
    • 2020
  • KTX rolling stocks are a system consisting of several machines, electrical devices, and components. The maintenance of the rolling stocks requires considerable expertise and experience of maintenance workers. In the event of a rolling stock failure, the knowledge and experience of the maintainer will result in a difference in the quality of the time and work to solve the problem. So, the resulting availability of the vehicle will vary. Although problem solving is generally based on fault manuals, experienced and skilled professionals can quickly diagnose and take actions by applying personal know-how. Since this knowledge exists in a tacit form, it is difficult to pass it on completely to a successor, and there have been studies that have developed a case-based rolling stock expert system to turn it into a data-driven one. Nonetheless, research on the most commonly used KTX rolling stock on the main-line or the development of a system that extracts text meanings and searches for similar cases is still lacking. Therefore, this study proposes an intelligence supporting system that provides an action guide for emerging failures by using the know-how of these rolling stocks maintenance experts as an example of problem solving. For this purpose, the case base was constructed by collecting the rolling stocks failure data generated from 2015 to 2017, and the integrated dictionary was constructed separately through the case base to include the essential terminology and failure codes in consideration of the specialty of the railway rolling stock sector. Based on a deployed case base, a new failure was retrieved from past cases and the top three most similar failure cases were extracted to propose the actual actions of these cases as a diagnostic guide. In this study, various dimensionality reduction measures were applied to calculate similarity by taking into account the meaningful relationship of failure details in order to compensate for the limitations of the method of searching cases by keyword matching in rolling stock failure expert system studies using case-based reasoning in the precedent case-based expert system studies, and their usefulness was verified through experiments. Among the various dimensionality reduction techniques, similar cases were retrieved by applying three algorithms: Non-negative Matrix Factorization(NMF), Latent Semantic Analysis(LSA), and Doc2Vec to extract the characteristics of the failure and measure the cosine distance between the vectors. The precision, recall, and F-measure methods were used to assess the performance of the proposed actions. To compare the performance of dimensionality reduction techniques, the analysis of variance confirmed that the performance differences of the five algorithms were statistically significant, with a comparison between the algorithm that randomly extracts failure cases with identical failure codes and the algorithm that applies cosine similarity directly based on words. In addition, optimal techniques were derived for practical application by verifying differences in performance depending on the number of dimensions for dimensionality reduction. The analysis showed that the performance of the cosine similarity was higher than that of the dimension using Non-negative Matrix Factorization(NMF) and Latent Semantic Analysis(LSA) and the performance of algorithm using Doc2Vec was the highest. Furthermore, in terms of dimensionality reduction techniques, the larger the number of dimensions at the appropriate level, the better the performance was found. Through this study, we confirmed the usefulness of effective methods of extracting characteristics of data and converting unstructured data when applying case-based reasoning based on which most of the attributes are texted in the special field of KTX rolling stock. Text mining is a trend where studies are being conducted for use in many areas, but studies using such text data are still lacking in an environment where there are a number of specialized terms and limited access to data, such as the one we want to use in this study. In this regard, it is significant that the study first presented an intelligent diagnostic system that suggested action by searching for a case by applying text mining techniques to extract the characteristics of the failure to complement keyword-based case searches. It is expected that this will provide implications as basic study for developing diagnostic systems that can be used immediately on the site.

Soil Surface Fixation by Direct Sowing of Zoysia japonica with Soil Improvement on the Dredged Soil Slope (해저준설토 사면에서 개량제 처리에 의한 한국들잔디 직파 지표고정 공법에 관한 연구)

  • Jeong, Yong-Ho;Lee, Im-Kyun;Seo, Kyung-Won;Lim, Joo-Hoon;Kim, Jung-Ho;Shin, Moon-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • This study was conducted to compare the growth of Zoysia japonica depending on different soil treatments in Saemangeum sea dike, which is filled with dredged soil. Zoysia japonica was planted using sod-pitching method on the control plot. On plots which were treated with forest soil and soil improvement, Zoysia japonica seeds were sprayed mechanically. Sixteen months after planting, coverage rate, leaf length, leaf width, and root length were measured and analyzed. Also, three Zoysia japonica samples per plot were collected to analyze nutrient contents. Coverage rate was 100% in B treatment plot(dredged soil+$40kg/m^3$ soil improvement+forest soil), in C treatment plots (dredged soil+$60kg/m^3$ soil improvement+forest soil), and D treatment plots (dredged soil+$60kg/m^3$ soil improvement), while only 43% of the soil surface was covered with Zoysia japonica on control plots. The width of the leaf on C treatment plots (3.79mm) was the highest followed by D treatment (3.49mm), B treatment (2.40mm) and control plots (1.97mm). Leaf and root length of D treatment was 30.18cm and 13.18cm, which were highest among different treatments. The leaf length of D treatment was highest followed by C, B, and A treatments. The root length of D treatment was highest followed by C, A, and B treatments. The nitrogen and phosphate contents of the above ground part of Zoysia japonica were highest in C treatment, followed by D, B, and A treatments. The nitrogen and phosphate contents of the underground part of Zoysia japonica were highest in D treatment, followed by C, A, and B treatments. C and D treatments showed the best results in every aspect of grass growth. The results of this study could be used to identify the cost effective way to improve soil quality for soil surface fixation on reclaimed areas using grass species.

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.