• Title/Summary/Keyword: 위치 좌표 값

Search Result 328, Processing Time 0.027 seconds

Development of the Geoid Model in Korean Peninsula referred to Bessel Ellipsoid (베셀타원체상에서의 한반도 지오이드 모델의 개발)

  • 이석배
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.213-223
    • /
    • 1998
  • This paper deals with the geoid modelling in and around Korean peninsula referred to Bessel ellipsoid. Several useful data were used to compute precise geoidal heights referred to GRS80 by remove and restore technique and FFT technique was used to evaluate Stokes' integral. All grid point elevations extracted from GTOPO 30 and Bessel coordinates of all grid point were computed through coordinates transformation by applying three transformation parameters. Finally, geoidal heights referred to Bessel ellipsoid were calculated by geometric method. As the results of this study, a precise gravimetric geoid model referred to GRS80 (KOGGDM33) and geoid model referred to Bessel ellipsoid(KOBGDM33) in and around Korean peninsula were developed. KOBGDM33 shows the gradual distribution of geoidal heights from -91.8 m in Yongampo to -39.0 m in the straits of Korea.

  • PDF

3D-Digital Model Generation of an Automobile-Fender Using Digital Photogrammetry (수치사진측량기법에 의한 Fender의 3차원 수치모형 생성)

  • 정성혁;황창섭;이재기
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.2
    • /
    • pp.147-154
    • /
    • 2001
  • The development of equipments which are for the collection and processing of digital images in digital photogrammetry is actively performed at the research about practical use. The close-range digital photogrammetry is widely using to determine accurate position, feature, and size of objects. The goal of this study is to judge the precise surveying possibility of a streamline object, like a vehicle, using digital close-range photogrammetry. The standard deviation of the calculated coordinates is respectively ${\sigma}_x$=0.434mm, ${\sigma}_y$=0.619mm, ${\sigma}_z$=0.387mm. The result values is enough to converge an accuracy required for the field of an automobile design. Therefor we suggest that the digital close-range photogrammetry could be use for the majority of industries.

  • PDF

Patient Position Verification and Corrective Evaluation Using Cone Beam Computed Tomography (CBCT) in Intensity.modulated Radiation Therapy (세기조절방사선치료 시 콘빔CT (CBCT)를 이용한 환자자세 검증 및 보정평가)

  • Do, Gyeong-Min;Jeong, Deok-Yang;Kim, Young-Bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2009
  • Purpose: Cone beam computed tomography (CBCT) using an on board imager (OBI) can check the movement and setup error in patient position and target volume by comparing with the image of computer simulation treatment in real.time during patient treatment. Thus, this study purposed to check the change and movement of patient position and target volume using CBCT in IMRT and calculate difference from the treatment plan, and then to correct the position using an automated match system and to test the accuracy of position correction using an electronic portal imaging device (EPID) and examine the usefulness of CBCT in IMRT and the accuracy of the automatic match system. Materials and Methods: The subjects of this study were 3 head and neck patients and 1 pelvis patient sampled from IMRT patients treated in our hospital. In order to investigate the movement of treatment position and resultant displacement of irradiated volume, we took CBCT using OBI mounted on the linear accelerator. Before each IMRT treatment, we took CBCT and checked difference from the treatment plan by coordinate by comparing it with the image of CT simulation. Then, we made correction through the automatic match system of 3D/3D match to match the treatment plan, and verified and evaluated using electronic portal imaging device. Results: When CBCT was compared with the image of CT simulation before treatment, the average difference by coordinate in the head and neck was 0.99 mm vertically, 1.14 mm longitudinally, 4.91 mm laterally, and 1.07o in the rotational direction, showing somewhat insignificant differences by part. In testing after correction, when the image from the electronic portal imaging device was compared with DRR image, it was found that correction had been made accurately with error less than 0.5 mm. Conclusion: By comparing a CBCT image before treatment with a 3D image reconstructed into a volume instead of a 2D image for the patient's setup error and change in the position of the organs and the target, we could measure and correct the change of position and target volume and treat more accurately, and could calculate and compare the errors. The results of this study show that CBCT was useful to deliver accurate treatment according to the treatment plan and to increase the reproducibility of repeated treatment, and satisfactory results were obtained. Accuracy enhanced through CBCT is highly required in IMRT, in which the shape of the target volume is complex and the change of dose distribution is radical. In addition, further research is required on the criteria for match focus by treatment site and treatment purpose.

  • PDF

감마나이프 방사선치료에서 소프트웨어와 하드웨어 시간설정차이에 의한 처방선량에 주는 영향

  • 서원섭;임영진;신동오
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.60-60
    • /
    • 2003
  • 목적 : 감마나이프 치료계획용 소프트웨어인 감마플렌에서 처방선량을 계산하는 단위와 실제 시간을 설정하는 하드웨어인 조정판의 시간설정 단위의 차이에 의한 실제 처방선량에 끼치는 영향을 계산하였다. 대상 및 방법 : 감마나이프는 주어진 4 개의 헬멧을 가지고 최소 한번 또는 최대 20 번 이상의 방사선 조합으로 한번에 많은 방사선을 목표물에 조사한다. 감마나이프 방사선 수술을 위한 치료계획용 소프트웨어인 감마플렌 5.32에서는 처방선량에 대한 치료시간을 최대 지점 또는 지정하는 지점에 규격화하여 소숫점 두 자리 즉 0.6 초까지 계산한다. 그러나 실제 치료를 위한 조정판의 시간설정은 모델 B 에서는 소숫점 한자리까지 가능하게 되어있다. 그러므로 모델 B를 사용하는 기관의 치료계획 컴퓨터인 감마플렌에서는 소숫점 한자리로 만들기 위해 반올림과 내림을 하게 되며 이것을 프린트하여 사용하게 된다. 실제 임상에서 멀티삿에 대한 반올림과 내림에 대한 효과를 선량으로 환산하여 처방선량에 끼치는 영향을 연구하였다. 치료 계획에 서 처방선량을 입력한 후 계산된 각 조사에 대한 소숫점 두자리 시간을 화면에 표시한 후 스냅tit으로 스크린 캡쳐하여 프린트하였으며, 소숫점 한자리로 된 최종 치료계획을 프린트하여 서로 비교 계산하였다. 결과 : 20 여명의 환자에 대한 치료 결과에 대한 분석은 조사의 수나 처방선량에 관계하지 않고 우연히 올림이 많으냐 내림이 많으냐에 의존하였다. 최대지점에 대하여 분석한 결과는 -0.48부터 +0.47로 -2%부터 +1.9%의 정도로 영향을 끼쳤다. 결론 : 반올림과 내림의 결과는 처방선량을 줄일 수도 있고 늘일 수도 있었다. 그러나 이 연구는 최대선량 지점에 대해 비교를 하였으나 실제로는 각 조사의 위치가 서로 다르므로 영향은 이보다 훨씬 적을 것으로 생각되어 소숫점 한자리로 치료하여도 무방할 것으로 보인다.mm, AP 방향에서는 2.1$\pm$0.82 mm이었다. 그리고 복부의 later의 방향에서는 7.0$\pm$2.1 mm, AP 방향에서는 6.5$\pm$2.2 mm 이었다. 또한 표적 위치측정을 위해서 환자의 피부에 임의의 가상표적을 부착하고 CT 촬영한 영상결과, 프레임으로 가상표 적에 대한 위치를 정확히 파악할 수 있었다. 결론 : 제작된 프레임을 적용하여 방사선투과율 측정실험, 환자 외부자세에 대한 오차 측정실험, 가상표적 위치측정 실험 등을 수행하였다. 환자 외부자세에 대한 오차 측정실험 경우, 더 많은 Volunteer를 적용하여 보다 정확한 오차 측정실험이 수행되어야 할 것이며 정확한 표적 위치 측정실험을 위해서 내부 마커를 삽입한 환자를 적용한 임상실험이 수행되어야 할 것이다. 또한 위치결정에서 획득한 좌표값의 정확성을 알아보기 위해서 팬톰을 이용한 방사선조사 실험이 추후에 실행되어져야 할 것이다. 그리고 제작된 프레임에 Rotating X선 시스템과 내부 장기의 움직임을 계량화하고 PTV에서의 최적 여유폭을 설정함으로써 정위 방사선수술 및 3 차원 업체 방사선치료에 대한 병소 위치측정과 환자의 자세에 대한 setup 오차측정 결정에 도움이 될 수 있을 것이라고 사료된다. 상대적으로 우수한 것으로 나타났으며, 혼합충전재는 암모니아의 경우 코코넛과 펄라이트의 비율이 7:3인 혼합 재료 3번과 소나무수피와 펄라이트의 비율이 7:3인 혼합 재료 6번에서 다른 혼합 재료에 비하여 우수한 것으로 나타났다. 4. 코코넛과 소나무수피의 경우 암모니아 가스에 대한 흡착 능력은 거의 비슷한 것으로 사료되며, 코코넛의 경우 전량을 수입에 의존하고 있다는 점에서 국내 조달이 용이하며, 구입 비용도 적게 소요되는 소나무수피를 사용하는 것이 경제적이라고 사료된다. 5. 마지막으로

  • PDF

Evaluation on the Accuracy of the PPS in the Proton Therapy System, Which Uses the Self Made QA Phantom (자체 제작한 QA Phantom을 이용한 양성자 PPS (Patient Positioning System)의 정확성 평가)

  • Lee, Ji-Eun;Kim, Jae-Won;Kang, Dong-Yoon;Choi, Jae-Hyeok;Yeom, Du-Seok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.115-121
    • /
    • 2012
  • Purpose: The process of the proton treatment is done by comparing the DRR and DIPS anatomic structure to find the correction factor and use the PPS to use this factor in the treatment. For the accuracy of the patient set up, the PPS uses a 6 axis system to move. Therefore, there needs to be an evaluation for the accuracy between the PPS moving materialization and DIPS correction factor. In order to do this, we will use a self made PPS QA Phantom to measure the accuracy of the PPS. Materials and Methods: We set up a PPS QA Phantom at the center to which a lead marker is attached, which will act instead of the patient anatomic structure. We will use random values to create the 6 axis motions and move the PPS QA Phantom. Then we attain a DIPS image and compare with the DRR image in order to evaluate the accuracy of the correction factor. Results: The average correction factor, after moving the PPS QA Phantom's X, Y, Z axis coordinates together from 1~5 cm, 1 cm at a time, and coming back to the center, are 0.04 cm, 0.026 cm, 0.022 cm, $0.22^{\circ}$, $0.24^{\circ}$, $0^{\circ}$ on the PPS 6 axis. The average correction rate when moving the 6way movement coordinates all from 1 to 2 were 0.06 cm, 0.01 cm, 0.02 cm, $0.1^{\circ}$, $0.3^{\circ}$, $0^{\circ}$ when moved 1 and 0.02 cm, 0.04 cm, 0.01 cm, $0.3^{\circ}$, $0.5^{\circ}$, $0^{\circ}$ when moved 2. Conclusion: After evaluating the correction rates when they come back to the center, we could tell that the Lateral, Longitudinal, Vertical were all in the acceptable scope of 0.5 cm and Rotation, Pitch, Roll were all in the acceptable scope of $1^{\circ}$. Still, for a more accurate proton therapy treatment, we must try to further enhance the image of the DIPS matching system, and exercise regular QA on the equipment to reduce the current rate of mechanical errors.

  • PDF

Automatic Generation Method of Road Data based on Spatial Information (공간정보에 기반한 도로 데이터 자동생성 방법)

  • Joo, In-Hak;Choi, Kyoung-Ho;Yoo, Jae-Jun;Hwang, Tae-Hyun;Lee, Jong-Hun
    • Journal of Korea Spatial Information System Society
    • /
    • v.4 no.2 s.8
    • /
    • pp.55-64
    • /
    • 2002
  • VEfficient generation of road data is one of the most important issues in GIS (Geographic Information System). In this paper, we propose a hybrid approach for automatic generation of road data by combining mobile mapping and image processing techniques. Mobile mapping systems have a form of vehicle equipped with CCD camera, GPS, and INS. They can calculate absolute position of objects that appear in acquired image by photogrammetry, but it is labor-intensive and time-consuming. Automatic road detection methods have been studied also by image processing technology. However, the methods are likely to fail because of obstacles and exceptive conditions in the real world. To overcome the problems, we suggest a hybrid method for automatic road generation, by exploiting both GPS/INS data acquired by mobile mapping system and image processing algorithms. We design an estimator to estimate 3-D coordinates of road line and corresponding location in an image. The estimation process reduces complicated image processing operations that find road line. The missing coordinates of road line due to failure of estimation are obtained by cubic spline interpolation. The interpolation is done piecewise, separated by rapid change such as road intersection. We present experimental results of the suggested estimation and interpolation methods with image sequences acquired by mobile mapping system, and show that the methods are effective in generation of road data.

  • PDF

A New Experimental Error Reduction Method for Three-Dimensional Human Motion Analysis

  • Mun, Joung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.459-468
    • /
    • 2001
  • The Average Coordinate Referenee System (ACRS) method is developed to reduce experimental errors in human locomotion analysis. Experimentally measured kinematic data is used to conduct analysis in human modeling, and the model accuracy is directly related to the accuracy of the data. However. the accuracy is questionable due to skin movement. deformation of skeletal structure while in motion and limitations of commercial motion analysis system . In this study. the ACRS method is applied to an optically-tracked segment marker system. although it can be applied to many of the others as well. In the ACRS method, each marker can be treated independently. as the origin of a local coordinate system for its body segment. Errors, inherent in the experimental process. result in different values for the recovered Euler angles at each origin. By employing knowledge of an initial, calibrated segment reference frame, the Euler angles at each marker location can be averaged. minimizing the effect of the skin extension and rotation. Using the developed ACRS methodology the error is reduced when compared to the general Euler angle method commonly applied in motion analysis. If there is no error exist in the experimental gait data. the separation and Penetration distance of the femoraltibial joint using absolute coordinate system is supposed to be zero during one gait cycle. The separation and Penetration distance was ranged up to 18 mm using general Euler angle method and 12 mm using the developed ACRS.

  • PDF

What Kinds of Rearing Stress Do the Mothers of the Gifted Have?: Using a Concept Mapping Approach (영재 자녀를 둔 어머니들의 양육 스트레스 분석: 개념도 기법을 활용하여)

  • Han, Ki-Soon;Lee, Young-Mi
    • Journal of Gifted/Talented Education
    • /
    • v.22 no.4
    • /
    • pp.893-916
    • /
    • 2012
  • This research investigates gifted students' mothers' rearing stress based on the concept mapping method. For this, 12 gifted students' mothers solicited, gathered and analyzed related statements, and then did multidimensional scaling and hierarchical cluster analysis. The stress value was .273 which was appropriate for the two level concept mapping study. In addition 101 mothers of gifted students rated for the rearing stresses they experience. Results were as follows. First, 79 concrete statements were solicited and as a result of concept mapping were categorized as 'burden and conflict as mothers of the gifted', 'possible negative characteristics due to the giftedness', and 'self-esteem and pressure by the title of the gifted'. Especially following items showed relatively high average: worrying about how to give the child a specific help for his/her career(M=4.65); worrying that she might be intervening too much in their child's behaviors(M=4.60); getting pressured supporting the child to get involved in the gifted education system continually(M=4.46); worrying if her child is not developing his/her talent enough due to the lack of time and money(M=4.44); being concerned that her high expectations might be putting her child under too much pressure (M=4.43). Implications of the study related to gifted education practices were discussed.

Development of the Railway Abrasion Measurement System using Camera Model and Perspective Transformation (카메라 모델과 투시 변환에 의한 레일 마모도 측정 시스템 개발)

  • Ahn, Sung-Hyuk;Kang, Dong-Eun;Moon, Hyoung-Deuk;Park, So-Yeon;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1069-1077
    • /
    • 2008
  • The railway abrasion measurement system have to satisfy two conditions to increase the measurement accuracy as follows. The laser region which is projected on the rail have to be extracted without the geometrical distortion. The mapping of the acquired laser region data on the rail profile have to be processed exactly. But, the conventional railway abrasion measurement system is deeply effected by the foreign substance( dust, rainwater, and so on ) on the railway or the sensitive response characteristic of the laser to the external measurement circumstance, and then the measurement errors arise from above factors. When the laser region is projected on the rail extracts from the acquired image, the interference of the light with the same frequency as the laser system occurs the serious problems. In the process of the mapping between the railway profile and the extracted laser region, the measurement accuracy is very highly effected by the geometrical distortion and the abnormal variation. In this Paper, we propose the novel method to increase the accuracy of the railway abrasion measurement dramatically. we designed and manufactured the high precision and fast image processing board with DSP Core and FPGA to measure the railway abrasion. The image processing board has the capability that the image of 1024X1280 from camera can be processed with the speed of 480 frame/sec. And, we apply the image processing algorithm base on the wavelet to extract the laser region is projected on the rail exactly. Finally, we developed high precision railway abrasion measurement system with the error range less than +/-0.5mm by which 2D image data is covered 3D data and mapped on the rail profile using the camera model and the perspective transform.

  • PDF

A Study on Iris Recognition by Iris Feature Extraction from Polar Coordinate Circular Iris Region (극 좌표계 원형 홍채영상에서의 특징 검출에 의한 홍채인식 연구)

  • Jeong, Dae-Sik;Park, Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.48-60
    • /
    • 2007
  • In previous researches for iris feature extraction, they transform a original iris image into rectangular one by stretching and interpolation, which causes the distortion of iris patterns. Consequently, it reduce iris recognition accuracy. So we are propose the method that extracts iris feature by using polar coordinates without distortion of iris patterns. Our proposed method has three strengths compared with previous researches. First, we extract iris feature directly from polar coordinate circular iris image. Though it requires a little more processing time, there is no degradation of accuracy for iris recognition and we compares the recognition performance of polar coordinate to rectangular type using by Hamming Distance, Cosine Distance and Euclidean Distance. Second, in general, the center position of pupil is different from that of iris due to camera angle, head position and gaze direction of user. So, we propose the method of iris feature detection based on polar coordinate circular iris region, which uses pupil and iris position and radius at the same time. Third, we overcome override point from iris patterns by using polar coordinates circular method. each overlapped point would be extracted from the same position of iris region. To overcome such problem, we modify Gabor filter's size and frequency on first track in order to consider low frequency iris patterns caused by overlapped points. Experimental results showed that EER is 0.29%, d' is 5,9 and EER is 0.16%, d' is 6,4 in case of using conventional rectangular image and proposed method, respectively.