• Title/Summary/Keyword: 위치 기반의 라우팅 프로토콜

Search Result 119, Processing Time 0.027 seconds

An Entropy-based Dynamic Routing Protocol for Supporting Effective Route Stability in Mobile Ad-hoc Wireless Sensor Networks (모바일 Ad-hoc 무선 센서 네트워크에서 효과적인 경로 안정성을 지원하기 위한 엔트로피 기반 동적 라우팅 프로토콜)

  • An, Beongku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.29-34
    • /
    • 2008
  • In this paper, we propose an entropy-based dynamic routing protocol for supporting effective route stability in mobile ad-hoc wireless sensor networks(MAWSN). The basic ideas and features are as follows. First, construction of entropy-based stable routing route using mobility of nodes between a source node and a destination node. Second, usage of location and direction information for route construction to support resource saving. Third, We consider a realistic approach, in the points of view of the MAWSN, based on mobile sensor nodes as well as fixed sensor nodes in sensor fields while the conventional research for sensor networks focus on mainly fixed sensor nodes. The performance evaluation of the proposed routing protocol is performed via simulation using OPNET. The simulation results show the proposed routing protocol can effectively support route stability and packet delivery ratio.

  • PDF

A Study on the Performance Enhancements of Location Aided Routing in Mobile Ad-hoc Networks (Mobile Ad-hoc Networks에서 위치기반라우팅의 성능 개선에 관한 연구)

  • Kim, Young-Beom
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.486-490
    • /
    • 2007
  • Recently, there have been active research efforts on devising efficient routing algorithms utilizing location information in ad-hoc mobile networks. In this paper, we propose a new method to improve the performance of the widely recognized Location Aided Routing (LAR) algorithm. To this end, we suggest the concept of accessible zone combined with the basic two schemes associated with LAR algorithm. Through the proposed algorithm, we can confine the flooding area within accessible zone, thereby reducing the routing delay.

Cluster-based Geocasting Protocol in Ad-hoc Networks (애드 혹 네트워크에서 클러스터 기반 지오캐스팅 프로토콜)

  • Lee Jung-Hwan;Yoo Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5A
    • /
    • pp.407-416
    • /
    • 2005
  • This paper suggests a new geocasting protocol which is used to transfer the geographic packets to the specific region in MANET. Geocasting protocol is basically different from the conventional multicasting protocol that needs group addition and maintenance. A geocasting protocol using the mobile node's position information is the new area of multicasting protocols. The existing geocasting protocols have the following problems; it may be impossible to transfer data to some mobile hosts even if there are alternate routes and they have low adaptability and efficiency when the number of mobile hosts increases. The proposed CBG (Cluster-Based Geocasting) uses the proactive routing strategy and clustering technique with mobile host's location information. The CBG achieves high successful data transmission ratio and low data delivery cost to mobile hosts at specific region.

Geographical Time Back-off Routing Protocol for Wireless Sensor Networks (무선 센서 네트워크에서 쥐치 정보의 시간차를 이용한 에너지 효율적인 라우팅 프로토콜)

  • Kim, Jae-Hyun;Sim, In-Bo;Kim, Hong;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5B
    • /
    • pp.247-256
    • /
    • 2007
  • In this paper, we propose Geographical Back-off Routing (Geo-Back Routing) protocol for wireless sensor networks. Geo-Back uses the positions of nodes, a packet's destination and a optimal back-off time to make the packet forwarding decisions using only source and destination's location information without information about neighbor nodes' location or the number of one hop neighbor nodes. Under the frequent topology changes in WSNs, the proposed protocol can find optimal next hop location quickly without broadcast algorithm for update. In our analysis, Geo-Back's scalability and better performance is demonstrated on densely deployed wireless sensor networks.

Pathless Multihop Packet Forwarding Protocol for Inter-vehicular Communication (차량간 통신을 위한 비경로형 멀티 홉 패킷 포워딩 프로토콜)

  • Lee, Woo-Sin;Lee, Hyuk-Joon
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.5
    • /
    • pp.328-339
    • /
    • 2007
  • Conventional topology-based routing protocols are not suitable for inter-vehicular communication, where frequent route updates are necessary due to continuous and abrupt changes in network topology Position-based routing protocols are widely accepted to better serve their purpose in such a scenario as they do not require path discovery or maintenance. However they have to deal with the overhead of the location service and inaccurate position information. This paper proposes the MMFP (Multi-hop MAC Forwarding Protocol) for inter-vehicle communication that relies on reachability information collected from received packets in making a forwarding decision without path discovery. The MMFP is designed as an extension to the IEEE 802.11 MAC layer to ensure accuracy in its time-critical operations. This paper also presents some simulation results that demonstrate the superior performance of the MMFP over AODV in a realistic inter-vehicular communication.

An Efficient Routing Algorithm for Solving the Lost Link Problem of Vehicular Ad-hoc Networks (차량 애드혹 네트워크의 링크 단절 문제 해결을 위한 효율적인 라우팅 알고리즘)

  • Lim, Wan-Seon;Kim, Sok-Hyong;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12B
    • /
    • pp.1075-1082
    • /
    • 2008
  • A greedy forwarding algorithm is one of the most suitable solutions for routing in vehicular ad-hoc networks. Compared to conventional routing protocols for mobile ad-hoc networks, greedy forwarding based routing protocols maintain only local information of neighbors instead of per-destination routing entries, and thus they show better performance in highly-mobile vehicular ad-hoc networks. With greedy forwarding, each node learns its geographical position and periodically broadcasts a beacon message including its position information. Based on the position information, each node selects a neighbor node located closest to the destination node as the next forwarder. One of the most serious problems in greedy forwarding is the lost link problem due to the mobility of nodes. In this paper, we propose a new algorithm to reduce the lost link problem. The proposed algorithm aims to find an efficient and stable routing path by taking account of the position of neighbors and the last beacon reception time. Our simulation results show that the proposed algorithm outperforms the legacy greedy algorithm and its variants.

Ad Hoc Routing Method Based on Betweenness Centrality and Location Information for Unmanned Ground System Networks (지상 무인로봇체계 네트워크를 위한 매개 중심도와 위치정보 기반 Ad Hoc 라우팅)

  • Ahn, Hyochun;Yim, Jinhyuk;Ko, Young-Bae;Choi, HyungSeok;Kwon, DaeHoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.441-450
    • /
    • 2016
  • Wireless multi-hop communication is one of the key technologies to operate Unmanned Ground System (UGS) networks efficiently. Conventionally a lot of routing protocol has been developed and studied for multi-hop networks like Mobile Ad-hoc Network (MANET). However, the routing protocol for the unique environment of the UGS requires further studies, since conventional routing protocols cannot be used itself for UGS networks. In this paper, we propose the Betweenness Centrality based Geographic Routing (BCGR) which considers the main function of UGS. BCGR utilizes expanded ego betweenness centrality, mobility and location information error, respectively. We have conducted a simulation study for evaluating the performance of the BCGR using ns-3, and our simulation results show that BCGR outperforms the conventional routing protocols such as AODV and GPSR in terms of end-to-end transmission reliability, throughput and delay.

Optimization Routing Protocol based on the Location, and Distance information of Sensor Nodes (센서 노드의 위치와 거리 정보를 기반으로 전송 경로를 최적화하는 라우팅 프로토콜)

  • Kim, Yong-Tae;Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.127-133
    • /
    • 2015
  • In order for location information to deliver the collected information, it needs Sensor Nodes in an environment of Sensor Network. Each sensor sends data to a base station through the process of routing in a wireless sensor network environment. Therefore, Offering accurate location information is very important in a wireless sensor network environment. Most of existed routing methods save all the informations of nodes at the area of 1-hop. In order to save these informations, unnecessary wasted energy and traffics are generated. Routing Protocol proposed in this paper doesn't save node's location information, and doesn't exchange any periodic location information to reduce wasted energy. It includes transmission range of source nodes and nodes with the location information, however it doesn't include any nodes' routing near 1-hope distance.

Location Service and Data Dissemination Protocol for Mobile Sink Groups in Wireless Sensor Networks (무선 센서 네트워크에서 이동 싱크 그룹을 위한 위치 서비스와 데이터 전송 프로토콜)

  • Yoon, Min;Lee, Euisin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1431-1439
    • /
    • 2016
  • In this paper, we propose a new location service and location-based routing for data dissemination from a source to a mobile group sink in less energy consumption of the sensor node. Unlike the existing protocols, the proposed protocol uses a leader sink instead of a group area as the location information to represent a mobile sink group. The proposed protocol also uses grid leaders on virtual grid structure to support sink mobility in location service. By using a leader sink as a representative and grid leaders for mobility supporting, the proposed protocol can exploit an efficient hierarchical location service and data dissemination method without using flooding. Accordingly, the proposed protocol carries out upper layer location services and data dissemination between a leader sink and a source and lower layer location services and data dissemination between the leader sink and member sinks. Simulation results demonstrate that the proposed protocol achieves energy-efficiency.

A Route Selection Method for Transmitting Data in MANET(Mobile Ad-hoc NETwork) (MANET(Mobile Ad-hoc NETwork)에서의 효율적인 데이터 전송을 위한 경로선택기법)

  • Cha, Hyun-Jong;Han, In-Sung;Ryou, Hwang-Bin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.671-674
    • /
    • 2008
  • 초기의 Ad-hoc 네트워크의 라우팅 프로토콜들은 Table-driven 알고리즘이 대두되었으나, 많은 문제점으로 이동단말의 이동성을 지원하는 On-demand 방식의 라우팅 프로토콜에 대한 연구가 진행되었다. 최근에는 On-demand 와 Table-driven의 장점을 반영한 AODV(Ad-hoc On-demand Distance Vector)가 널리 이용되고 있다. 그러나 AODV의 장점에도 불구하고 아직까지 AODV 는 노드들의 잦은 이동으로 Ad-hoc 네트워크에 많은 라우팅 패킷을 발생시켜 전체적인 네트워크의 성능 면에서 많은 약점을 보이고 있다. 본 논문에서는 Ad-hoc 네트워크를 구성하는 노드들 사이의 링크에 대한 신뢰성을 위해 노드의 이동경로예측을 기반으로 하는 새로운 경로설정 및 유지기법을 제안한다. 제안하는 기법은 AOMDV를 기반으로 노드의 위치와 이동 정보로 이동되는 방향과 위치를 예측하여 보다 안정적인 경로를 선택할 수 있는 기회를 제공하는 라우팅 기법이다. 또한 AOMDV로 다중경로를 보유하여 데이터의 종류와 특성에 적합한 최적의 경로선택으로 불필요한 경로설정 메시지의 오버헤드를 줄인다.