• Title/Summary/Keyword: 위성 토양수분 데이터

Search Result 40, Processing Time 0.037 seconds

Soil Moisture Retrieval of Mountainous Area on Korean Peninsula using Sentinel-1 Data (Sentinel-1 자료를 이용한 한반도 산지에서의 토양수분 복원 연구)

  • Cho, Seongkeun;Choi, Minha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.102-102
    • /
    • 2019
  • 토양수분은 수문 및 기상 현상의 주요 요인으로 가뭄, 홍수 및 범람과 같은 자연 재해와 관련이 깊은 인자이다. 이러한 토양수분의 관측 기술 중 위성 데이터를 활용한 원격탐사 기술은 광범위한 지역의 관측이 용이하고 지점이 아닌 공간 데이터를 제공하는 장점을 지니고 있어 토양수분의 관측에 유리하다. 특히 높은 해상도의 위성기반 토양수분 데이터는 토양수분의 변동성이 큰 지역의 수문, 기상학적 현상을 보다 자세히 분석할 수 있게 해주며 가뭄 및 범람과 같은 수자원 관련 재해를 정확하게 분석하는데 요구된다. 이로 인해 최근 Sentinel-1 위성에서 운용중인 Synthetic Aperture Radar(SAR) 데이터를 이용한 매우 높은 공간해상도(10m~1km)를 지니고 있는 토양수분데이터 생산에 관한 연구가 세계적으로 활발히 진행되고 있다. 그러나 국내에서는 Sentinel-1 위성을 이용한 토양수분 데이터 복원에 관한 연구가 미비한 실정이다. 따라서 본 연구에서는 파주 감악산 설마천 유역에서의 Sentinel-1 위성의 SAR 데이터를 이용한 고해상도 토양수분 데이터를 복원하고자 한다. 파주 설마천 유역은 감악산 일대로 경사가 심하고 식생이 두터운 산악지형이다. SAR를 이용하여 산지에서 신뢰성 있는 토양수분 자료를 복원하기 위해서는 가장 큰 오차의 원인으로 작용하는 경사와 식생을 고려하여야 한다. 먼저 표면 경사의 영향의 경우 SAR 센서의 레이더 입사각과 수치 표고 모델을 이용하여 고려하고자 한다. 다음 과정으로 표면 경사가 고려된 Sentinel-1 데이터의 후방산란계수와 Landsat-8 데이터 및 지점 토양수분 데이터를 이용하여 식생에 따른 후방산란계수의 거동을 Water Cloud Model을 이용하여 분석하였다. Water Cloud Model은 토양위의 식생의 수분이 후방산란계수에 혼동을 주는 구름과 같이 작용한다고 가정하고 식생수분을 후방산란계수와 레이더 입사각 및 식생지수를 통해 계산하는 모델이며 이를 이용하여 토양수분 복원에 있어 식생의 영향을 제거하고자 하였다. 이를 통해 식생과 표면 경사를 고려하여 복원된 토양수분 데이터를 설마천 유역의 지점 데이터와 비교 분석하고 다른 위성기반 토양수분 데이터 및 강우 데이터를 이용하여 평가하였다. 본 연구결과를 통해 한반도 산지에서의 SAR 데이터를 이용한 토양수분 복원 기술의 기초가 마련될 것이며 이를 통해 산지가 대부분인 한반도의 토양수분 거동을 이해하는데 유용한 자료를 제공할 수 있을 것으로 기대된다. 본 연구 이후에는 연구결과분석을 통한 산지에서의 고해상도 토양수분 복원 알고리즘을 분석, 보완하고 한반도에서의 SAR 기반 토양수분 데이터의 정확도를 높이는 연구가 진행되어야 할 것이다.

  • PDF

An inter-comparison of satellite-based soil moisture over East Asia (동아시아 지역 토양수분 산출 위성 평가)

  • Kim, Hyunglok;SunWoo, Wooyeon;Choi, Minha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.187-187
    • /
    • 2015
  • 인공위성을 이용한 토양수분의 측정은, 범지구적인 물순환 분석에 있어서, 수문학적인 인자들의 시공간적인 변화를 예측, 분석하는데 있어 가장 효율적인 방법으로 제안되어왔다. 현재 국/내 외 적으로 사용하는 토양수분 위성은 Soil Moisture and Ocean Salinity (SMOS), Advanced SCATerometer (ASCAT)이 많이 사용되고 있으며, 더불어 일본에서 최근에 발사 된 Advanced Microwave Scanning Radiomter 2 (AMSR2) 센서를 통한 토양수분도 데이터도 적극 활용 되고 있다. 각 위성은 토양수분을 산출 하는 알고리즘, 파장대 그리고 위성 통과 시간 등이 각기 다르므로, 이러한 위성의 데이터를 사용하기 위해서는 지점 데이터와의 검증이 필수적으로 필요하게 된다. 이에따라 본 연구에서는 위성 데이터와 Global Land Data Assimilation System (GLDAS)와의 비교를 통해 각 위성데이터의 동아시아 지역에서의 효용성을 평가하였다. 동아시아의 건조한 지역에서는 SMOS가 가장 좋은 토양수분 데이터 결과를 보여주었으며, 다른 많은 지역에서는 ASCAT이 우세한 결과를 보여주었다. 하지만 한반도 지역의 특정 지역에서는 AMSR2의 토양수분 값이 ASCAT을 뛰어넘는 좋은 결과를 보여주는 결과가 도출되었다. 추가적으로, SMOS의 경우 Radio Frequency Interference (RFI)의 영향으로 한반도지역 토양수분을 측정하는 것에는 많은 무리가 있음을 알 수 있었다.

  • PDF

Evaluation of initial condition in rainfall-runoff model using the Satellite-based soil moisture data (위성 토양수분 데이터 기반 강우-유출모형 초기조건 산정)

  • Choi, Minha;SunWoo, Wooyeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.109-109
    • /
    • 2016
  • 유역의 물수지는 기상인자, 지형, 토양, 식생 등 여러 가지 인자들에 의해 결정된다. 물수지 분포를 평가하기 위해 수문모형의 모의 시 필요한 수문요소 조건들을 정보화하게 되며, 동시에 토양수분의 특성, 강우 입력자료, 유역의 지형학적 특성들은 불확실성에 기인하는 요소로 작용한다. 이러한 수문모형 모의 시 불확실성을 제거하기 위해 모형 초기조건에 대한 다각적인 분석이 선행이 필요하다. 특히 토양수분은 대기와 지표 사이의 상호작용에 작용하는 중요한 수문기상학적 인자로 평가되고 있다. 토양수분 데이터 자료를 이용하여 강우-유출모형의 입력자료를 구축하여 실제 토양수분의 변동성을 파악하는 연구가 활발히 진행되고 있으며, 유역기반의 유출현황을 산정하기 위해 매우 유용한 초기조건으로 그 역할이 기대된다. 현장에서 관측하는 토양수분 데이터는 넓은 유역의 토양수분을 대표하는 자료로 사용되기에는 한계점이 있으며, 위성기반 토양수분 데이터는 원격탐사를 통해 획득되기 때문에 토양수분의 시 공간적인 변동성 파악에 용의하며 경제성 또한 높다. 이에 따라, 본 연구에서는 유역의 수문순환 분석을 하고, 위성기반 토양수분의 적용 가능성을 평가하기 위해 Aqua위성에 탑재된 Advanced Mircowave Scanning Radiometer Earth Observing System(AMSR-E)와 Metop-A의 Advanced SCATterometer(ASCAT)의 토양수분 데이터를 이용하여 강우-유출모델의 초기조건을 산정하였다. 또한, 이에 대한 검증을 위해 기존 강우인자 초기조건 및 지점에서 관측된 토양수분 초기조건 등을 비교하여 통계분석을 실시하였다.

  • PDF

Spatial Downscaling of Satellite-based Soil Moisture Using Support Vector Machine in Northeast Asia (기계학습을 활용한 동북아시아 지역 위성 토양수분 데이터 상세화 연구: AMSR2, ASCAT 데이터를 활용하여)

  • Choi, Min Ha;Kim, Seongkyun;Kim, Hyung Lok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.208-208
    • /
    • 2016
  • 수문순환과정의 시공간적 거동을 해석하고 이를 정량화 하는 것은 효율적인 수자원 관리 및 계획을 위해 반드시 선행되어야 하는 연구이다. 특히 토양수분은 물 에너지 순환에서 지표면과 대기 사이의 복잡한 관계를 이해하기 위한 중요한 수문인자로, 이를 정확하게 측정하기 위한 방법들이 다각도로 발전되어 왔다. 그 중 위성 데이터를 활용한 토양수분 산정은 미계측 지역의 토양수분을 지속적이고 광역적이게 관측할 수 있는 선진 기술로 각광받고 있다. 그러나 대부분의 위성 자료들이 가지고 있는 공간 해상도는 복잡한 지형 환경을 대상으로 한 지역의 원격 탐사로서는 국지적인 수문학적 현상들을 분석하는데 어려움을 가지고 있다. 특히 우리나라의 경우 국토의 70% 정도가 산지로 이루어져 있으며 경사도가 $5^{\circ}$ 이하의 평탄한 지역은 약 23%에 그치는 등 복잡한 식생 지형 환경을 가지고 있다. 따라서 인공위성의 해상도와 식생 투과도를 고려할 때 저 해상도의 위성 토양수분만으로는 우리나라와 같이 면적에 비해 복잡한 환경에 기반 한 수문학적 현상들을 충분히 분석하는데 한계점이 있다. 따라서 본 연구에서는 support vector machine (SVM) 기계학습을 활용하여 ASCAT과 AMSR2 위성 토양수분의 상세화를 수행하여 고해상도의 토양수분을 산정하였고, 이를 지점관측 자료와 비교해 상세화도 자료의 신뢰성을 평가하였다. 검증된 고해상도 토양수분 데이터는 향후 자연재해 분석에 있어 예측의 정확성을 높이고 수문순환 및 기후 모델링에 있어서 중요한 입력 인자로 활용될 것으로 기대된다.

  • PDF

Revising Passive Satellite-based Soil Moisture Retrievals over East Asia Using SMOS (MIRAS) and GCOM-W1 (AMSR2) Satellite and GLDAS Dataset (자료동화 토양수분 데이터를 활용한 동아시아지역 수동형 위성 토양수분 데이터 보정: SMOS (MIRAS), GCOM-W1 (AMSR2) 위성 및 GLDAS 데이터 활용)

  • Kim, Hyunglok;Kim, Seongkyun;Jeong, Jeahwan;Shin, Incheol;Shin, Jinho;Choi, Minha
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.132-147
    • /
    • 2016
  • In this study the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) sensor onboard the Soil Moisture Ocean Salinity (SMOS) and Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor onboard the Global Change Observation Mission-Water (GCOM-W1) based soil moisture retrievals were revised to obtain better accuracy of soil moisture and higher data acquisition rate over East Asia. These satellite-based soil moisture products are revised against a reference land model data set, called Global Land Data Assimilation System (GLDAS), using Cumulative Distribution Function (CDF) matching and regression approach. Since MIRAS sensor is perturbed by radio frequency interferences (RFI), the worst part of soil moisture retrieval, East Asia, constantly have been undergoing loss of data acquisition rate. To overcome this limitation, the threshold of RFI, DQX, and composite days were suggested to increase data acquisition rate while maintaining appropriate data quality through comparison of land surface model data set. The revised MIRAS and AMSR2 products were compared with in-situ soil moisture and land model data set. The results showed that the revising process increased correlation coefficient values of SMOS and AMSR2 averagely 27% 11% and decreased the root mean square deviation (RMSD) decreased 61% and 57% as compared to in-situ data set. In addition, when the revised products' correlation coefficient values are calculated with model data set, about 80% and 90% of pixels' correlation coefficients of SMOS and AMSR2 increased and all pixels' RMSD decreased. Through our CDF-based revising processes, we propose the way of mutual supplementation of MIRAS and AMSR2 soil moisture retrievals.

Estimate Soil Moisutre Using Satelite Image and Data Mining (위성영상과 데이터 마이닝 기법을 이용한 토양수분 산정)

  • Kim, Gwang-Seob;Park, Han-Gyun;Cho, So-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1615-1619
    • /
    • 2010
  • 토양수분은 토양입자에 포함되어 있는 물을 의미하는 것으로 지표면과 대기간의 에너지 균형과 물 순환을 조절하는데 중요한 요소이다. 본 연구에서는 토양수분 산정을 위하여 2003년 1월부터 2008년 12월까지의 MODIS(Moderate Resolution Imaging Spectroradiometer) 위성관측 자료로부터 획득한 정규식생지수(NDVI: Normalized Difference Vegetation Index)자료와 지표면 온도자료, 우리나라 76개소 기상관측소 중에 자료의 보유기간이 30년 이하인 관측소와 섬 지역들을 제외한 57개 지점의 강수량, 토양온도 자료 및 우리나라 전역에 대한 토지피복, 유효토심자료를 이용하여 데이터 마이닝(Data Mining) 기법의 하나인 CART(Classification And Regression Tree) 기법을 이용하여 토양수분을 산정하였다. 먼저 신뢰성 높은 토양수분 관측 자료를 가진 용담댐 유역의 6개 지점에 대하여 토양수분을 산정하여 적용 가능성을 분석하였다. 3개 지점의 토양수분 관측치는 토양수분 산정 모형 수립에 사용하였으며 검증에 사용된 1개 지점의 토양수분의 관측치와 추정치 간의 상관계수를 확인한 결과 전체적인 토양수분의 거동을 잘 나타내고 있어 토양수분 추정 모형의 적용가능성을 확인하였다. 이를 이용하여 용담댐 유역의 토양수분 분포와 우리나라 전역에 대한 토양수분 분포도를 추정하였다. 신뢰할 수 있는 지상관측 토양수분 관측치가 다양한 지상조건에 대하여 존재하지 않는 한계가 있음에도 불구하고 제시된 토양수분산정 방법은 제한된 가용자료를 사용한 우리나라 전역의 토양수분 산정에 있어 합리적인 접근법이라 판단된다.

  • PDF

River Flow Forecasting using Satellite-based Products and Machine Learning Technique over the Ungauged River Flow in Korean Peninsula, Imjin River: Using MODIS, ASCAT, and SDS dataset (위성 데이터 및 기계 학습 기법을 활용한 한반도 임진강 미계측 지역 유출량 예측: MODIS, ASCAT, SDS 데이터를 활용하여)

  • Choi, Min Ha;Kim, Hyung Lok;Li, Li;Jun, Kyung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.159-159
    • /
    • 2016
  • 북한 지역에서 시작되어 한반도의 금문댐까지 연결되는 임진강은 북한지역의 유출량 미계측으로 인해 유출량 산출에 많은 어려움이 있어왔다. 본 연구에서는 위성 데이터를 활용하여 미계측 유역의 유출량을 추정 할 수 있는 기법을 제시하였다. Satellite-derived Flow Signal (SDF)는 위성 기반 특정 지역의 유출 정보를 제공하며, JAXA의 GCOM-W1 위성에 탑재된 Advanced Microwave Scanning Radiometer 2(AMSR2) 센서에서 산출된다. 본 연구에서는 SDS 뿐 아니라 유출에 크게 관련이 있는 지표 토양수분 데이터와 식생인자를 임진강 유출 값을 예측하기 위한 입력 값으로 활용하였다. 토양수분 데이터는 Metop-A 위성에 탑재된 Advanced Scatterometer(ASCAT) 센서에서 산출되는 데이터를 활용하였으며, 식생데이터는 Aqua 위성에 탑재된 Moderate Resolution Imaging Spectroradiometer(MODIS) 센서에서 측정되는 Normalized Difference Vegetation Index(NDVI) 데이터를 활용하였다. 추가적으로 SDS, 토양수분, NDVI 데이터는 다양한 lag time으로 약 150여개의 입력데이터로 세분화되었다. 150개의 방대한 입력인자는 Partial Mutual Information(PMI) 방법을 통해 소수 중요 인자들로 간추려져 기계 학습 입력인자로 활용되었다. 기계학습에 있어서는 Support Vector Machine(SVM), Artificial Neural Network (ANN) 기법을 활용하였다. SVM, ANN을 통해 모델화된 유출데이터는 금문댐 유출데이터와 비교/분석되었다. SVM 기법 기반의 유출량은 실제 유출량과 0.73의 상관계수를 보여주었고, ANN 기법 기반의 유출량은 0.66의 상관계수를 결과를 나타내었다. 하지만 SVM 기반 유출데이터는 과소 산정 되는 경향을 보였으며, ANN 기법 기반의 유출량은 과대산정되는 결과가 산출되는 한계점이 있음을 파악할 수 있었다.

  • PDF

A Study on the Neural Network Model for Soil Moisture Estimation (토양수분 추정을 위한 신경망 모형 개발에 관한 연구)

  • Kim, Gwang-Seob;Park, Jung-A
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.408-408
    • /
    • 2011
  • 수자원관리와 수문모형에 있어 강수, 증발산, 침투, 침루 등의 물 순환과정에 대한 실질적인 이해와 분석연구의 중요도가 높아지고 있는 실정이며, 그중에서도 토양수분은 강수의 침투, 유출 등의 지표면과 대기사이의 질량 및 에너지이동에 관여하는 중요한 요소로서 수자원 및 수문현상에 직접적인 영향을 미친다. 이를 위해 강수, 증발산, 토양수분과 같은 수문변수에 대한 다양한 관측이 실시되어야 하지만 국내에서는 지속적이고 안정적으로 지상관측을 할 수 없는 실정이며 관련 기반기술도 매우 취약하다. 따라서 이를 극복하기 위해서는 위성영상자료를 이용함으로써 한반도 전체에 대한 광역적인 토양수분자료의 획득을 용이하게 한다. 본 연구의 연구유역은 수자원 연구를 위해서 지정된 용담댐 시험유역으로 하였으며, 토양수분 관측지점의 지상관측 수문자료인 각 지점별 강수량, 지면온도, 인공위성자료인 MODIS 정규식생지수 등의 가용자료를 수집하고 신경망모형을 활용한 토양수분자료 생산 모형을 개발하여, 개선된 시공간 분해능과 공간정보 대표성을 가진 광역 토양수분자료를 생산하고 적용타당성을 분석하였다. 산정된 토양수분모형의 적용가능성을 파악하고자 용담댐 유역의 각 지점별 토양수분 관측데이터와 추정데이터를 비교한 결과 추천, 부귀, 상정 지점의 경우 평균 약 0.9257의 상관계수와 약 1.2917의 평균제곱근오차를 보였고, 검증지점인 천천2의 경우 약 0.8982의 상관계수와 약 5.1361의 평균제곱근오차의 결과를 보여주었으며 토양수분 추정모형의 적용가능성이 높음을 확인할 수 있었다.

  • PDF

Construction and estimation of soil moisture site with FDR and COSMIC-ray (SM-FC) sensors for calibration/validation of satellite-based and COSMIC-ray soil moisture products in Sungkyunkwan university, South Korea (위성 토양수분 데이터 및 COSMIC-ray 데이터 보정/검증을 위한 성균관대학교 내 FDR 센서 토양수분 측정 연구(SM-FC) 및 데이터 분석)

  • Kim, Hyunglok;Sunwoo, Wooyeon;Kim, Seongkyun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.133-144
    • /
    • 2016
  • In this study, Frequency Domain Reflectometry (FDR) and COSMIC-ray soil moisture (SM) stations were installed at Sungkyunkwan University in Suwon, South Korea. To provide reliable information about SM, soil property test, time series analysis of measured soil moisture, and comparison of measured SM with satellite-based SM product are conducted. In 2014, six FDR stations were set up for obtaining SM. Each of the stations had four FDR sensors with soil depth from 5 cm to 40 cm at 5~10 cm different intervals. The result showed that study region had heterogeneous soil layer properties such as sand and loamy sand. The measured SM data showed strong coupling with precipitation. Furthermore, they had a high correlation coefficient and a low root mean square deviation (RMSD) as compared to the satellite-based SM products. After verifying the accuracy of the data in 2014, four FDR stations and one COSMIC-ray station were additionally installed to establish the Soil Moisture site with FDR and COSMIC-ray, called SM-FC. COSMIC-ray-based SM had a high correlation coefficient of 0.95 compared with mean SM of FDR stations. From these results, the SM-FC will give a valuable insight for researchers into investigate satellite- and model-based SM validation study in South Korea.

Development of soil moisture satellite and ground observation data synchronization techniques (중권역 단위 토양수분 위성 및 지상 관측자료 동기화 기법 개발)

  • Jae Beom Lee;Jeong-Seok Yang;Yeon Kyeong Han;Shin Young Joo;Ui Geon Jeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.372-372
    • /
    • 2023
  • 강우 유출 시 지표면 토양수분포화도는 직접유출량 및 지하수 저류에 영향을 미칠 수 있기 때문에 강우에 의한 유역 유출량 산정에서 토양수분포화도는 보다 실제와 유사한 모의 결과를 도출하는데 중요한 인자가 될 수 있다. 기존의 모형 기반의 유출량 산정 연구에서 토양수분포화도의경우 강수량, 하천수위, 유량, 지하수위 등 타 수문순환 요소에 비하여 관측 지점 및 관측 자료가 부족하기 때문에 유역 내 수문환경 특성에 따라 가정 된 값을 입력하여 유출량을 산정하였다. 최근 IoT, 5G 통신 등 정보 기술의 혁신과 이상 홍수에 의한 피해 저감을 위한 실시간 유출량 해석 모형 개발 등에 적용할 경우 모의 결과가 실제와 매우 다르게 나타나는 경우가 발생할 수 있다. 본 연구에서는 토양수분포화도의 지상 관측 자료와 위성 관측 자료를 동기화 하는 기법을 개발함으로써 중권역 단위의 유출량 산정 정확도를 향상시키고자 하였다. 기존의 지상 관측 자료는 토양수분포화도의 비교적 정확한 데이터를 제공하나 관측 자료를 유역의 대푯값으로 적용할 수 있는 지에 대한 추가 검증이 필요하다. 위성 관측자료는 유역 전반의 토양수분포화도 정보를 관측할 수 있으나 고해상도의 자료를 제공하지 못하기 때문에 유역 전체에 일관된 데이터를 적용할 수밖에 없는 한계가 발생한다. 지상 관측자료와 위성관측자료의 동기화 기법을 개발함으로써 본 연구진은 중권역 단위의 유역 내 비교적 정확한 토양수분포화도 데이터를 적용할 수 있도록 하였다. 본 연구의 결과물은 유출량 해석 결과의 정확도를 높임으로써 급격한 호우 사상 발생에 따른 이상홍수에 대응할 수 있는 유역 물 관리 대책의 기초 자료로 활용 할 수 있을 것으로 기대된다.

  • PDF