• Title/Summary/Keyword: 위성 추적 부이

Search Result 7, Processing Time 0.016 seconds

Temporal and Spatial Variation of the Sea Surface Temperature Differences Derived from Argos Drifter Between Daytime and Nighttime in the Whole East Sea (위성추적 표류부이를 이용한 동해 표면수온의 주야간 온도차에 대한 중규모 시공간 변동)

  • 서영상;장이현;이동규
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.219-230
    • /
    • 2001
  • The daytime and nighttime sea surface temperature (SST) differences and their seasonal variabilities in the East Sea were studied using Argos drifters data during 1996~1999. The SST differences for 1,438 data set were derived from 30 Argos drifters related to the NOAA satellite-based location and data collection system. The horizontal variation of SST differences in summer in the East Sea were higher than those in winter. The relationship between the SST differences and the half day moving distances of Argos drifters was studied. Monthly SST difference in the northern and southern part of 38$^{\circ}$N in the East Sea was considered. The SST differences derived from NOAA-14 satellite were compared with those from Argos drifter between daytime and nighttime in the turbulent eddy off Wonsan coast of Korea.

A Recurring Eddy off the Korean Northest Coast Captured on Satellite Ocean Color and Sea Surface Temperature Imagery (위성의 해색 영상과 해수면온도 영상을 활용한 재발생 와동류에 관한 연구)

  • ;B.G.Mitchell
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.175-181
    • /
    • 1999
  • A recurring eddy which located at the terminal end of the Korean East Warm Current was captured on ocean color and sea surface temperature imagery from satellite in spring and autumn. During late April, 1997 thermal infrared imagery from the NOAA AVHRR sensor and ocean color data from the Japanese ADEOS-I OCTS sensor, revealed this feature. The cold core had elevated chlorophyll concentrations, based on OCTS estimates, of greater than 3 mg/m$^3$ while the warmer surrounding waters had chlorophyll concentrations of 1 mg/m$^3$ or less. The elevated cholophyll accociated with this eddy has not been previously described. The eddy is also evident in SST images from autumn, but the SST in the core is warmer than in spring, and the warm jet flowing to the west of the eddy is also warmer is autumn compared to spring. A reccurring eddy and the high chlorophyll_a concentration area which surround around the eddy show on NOAA and SeaWiFS images in March 2, 1998. The eddy forms at the northern extent of the Korean East Warm Current as those waters collide with the cold, south-flowing Liman Current over a topographic shelf about 1500 m deep. This region of the eddy formation appears to have a strong connection with the dynamics of the western part of the polar front eddy field that dominates surface mesoscale structure in the central East (Japan) Sea. Interaction of the eddy with ARGOW tracked drifters, and evidence for its persistence are discussed.

Surface Current Measurement by Tracking a Buoy Drifted from Mara-do (마라도에서 표류된 부이의 위치추적을 이용한 표층류의 실측정보)

  • Ryu Hwangjin;Song Museok;Jung Jinyoung;Ahn Yongho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.4
    • /
    • pp.41-47
    • /
    • 2002
  • The surface current in the region from Mara-do to mid of the Pacific has been measured by tracking the position of a buoy. The buoy was accidentally released from its original location, near Mara-do, and it has been drifting following the surface current. The tracking started on 27 December 2001 and continued until 29 June 2002. We combined the trace oi the buoy with the wind data available.

  • PDF

Analysis of the estuary outflow characteristics of floating debris in the downstream of Nakdong River using satellite location tracking buoys (위성 위치 추적 부이를 활용한 낙동강 하류 부유쓰레기의 하구 유출 특성 분석)

  • Jang, Seon-Woong;Yoon, Hong-Joo;Seo, Won-Chan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.157-164
    • /
    • 2015
  • The present study is to identify discharge characteristic from the mouth of floating debris in the Nakdong River through real time tracking of moving route and by analyzing hydrometeorologic environmental. To identify the path and route of outflow through the mouth of the river of floating debris, small-sized buoy equipped with satellite location transmitters was used. Moreover, to identify hydrometeorologic environmental, flux of the river, change of discharge of the River-Mouth Weir and wind direction of the mouth of the river area were analyzed. From now on, the present study is expected to be utilized as basic data to identify damage and flowing into nearby ocean of the floating debris of Nakdong River in time of severe rain storm.

A Development of Marine Observation Buoy Monitoring System Using Trail Camera and AtoN AIS (트레일 카메라 및 AIS를 이용한 해양관측부이용 감시시스템의 개발)

  • Gang, Yong-Soo;Wong, Chii-Lok;Hwang, Hun-Gyu;Kang, Seok-Sun;Kim, Hyen-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.306-307
    • /
    • 2018
  • 본 논문에서는 해양관측부이 보호 및 해상 관측 등을 위해 사용되고 있는 국내외 영상감시 시스템 및 기술 현황을 살펴보고, 차세대 해상용 통신 네트워크 및 인공위성을 통한 해양 공공시설의 안전감시 시스템이 가져야 할 요구사항과 이에 대한 국내외 기술개발 현황을 살펴본다. 또한, 선박 인식 및 추적, 나아가 충돌 예측 등을 수행하여, 해상사고를 예방할 수 있는 해양관측부이용 감시시스템의 개발에 관한 내용을 다룬다. 이를 위해 개발하는 시스템은 해양관측부이에 장착되어 저전력으로 동작하며, 해수에 강한 트레일 감시카메라를 개발하여 적용한다. 추가적으로 AIS정보를 활용한 충돌 예방 경고 모듈이 탑재되고, LTE-M 등과 같은 차세대 해상이동통신 및 위성망 M2M 네트워크를 응용한 통신 모듈을 기반으로 육상 알람 기능을 제공한다. 이를 통해 시스템의 신뢰성을 확보하고, 대형 선박과의 해상사고(선박추돌사고 및 기름유출 등)와 소형선박에 의한 시설물 훼손(Vandalism)의 발생 가능성을 인지할 수 있는 종합적인 데이터를 수집하여 사고의 예방 및 재난 상황 등을 예측함으로써 중요시설의 안전 및 해양환경 보호에 기여하고자 한다.

  • PDF

Application of Remote Sensing Techniques to Survey and Estimate the Standing-Stock of Floating Debris in the Upper Daecheong Lake (원격탐사 기법 적용을 통한 대청호 상류 유입 부유쓰레기 조사 및 현존량 추정 연구)

  • Youngmin Kim;Seon Woong Jang ;Heung-Min Kim;Tak-Young Kim;Suho Bak
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.589-597
    • /
    • 2023
  • Floating debris in large quantities from land during heavy rainfall has adverse social, economic, and environmental impacts, but the monitoring system for the concentration area and amount is insufficient. In this study, we proposed an efficient monitoring method for floating debris entering the river during heavy rainfall in Daecheong Lake, the largest water supply source in the central region, and applied remote sensing techniques to estimate the standing-stock of floating debris. To investigate the status of floating debris in the upper of Daecheong Lake, we used a tracking buoy equipped with a low-orbit satellite communication terminal to identify the movement route and behavior characteristics, and used a drone to estimate the potential concentration area and standing-stock of floating debris. The location tracking buoys moved rapidly during the period when the cumulative rainfall for 3 days increased by more than 200 to 300 mm. In the case of Hotan Bridge, which showed the longest distance, it moved about 72.8 km for one day, and the maximum moving speed at this time was 5.71 km/h. As a result of calculating the standing-stock of floating debris using a drone after heavy rainfall, it was found to be 658.8 to 9,165.4 tons, with the largest amount occurring in the Seokhori area. In this study, we were able to identify the main concentrations of floating debris by using location-tracking buoys and drones. It is believed that remote sensing-based monitoring methods, which are more mobile and quicker than traditional monitoring methods, can contribute to reducing the cost of collecting and processing large amounts of floating debris that flows in during heavy rain periods in the future.

Thermal Structure of the East China Sea Upper Layer Observed by a Satellite Tracked Drifter Experiment (위성추적부이를 이용한 동중국해 상층 수온구조 관측)

  • Lee, Seok;Lie, Heung-Jae;Cho, Cheol-Ho;Song, Kyu-Min;Lee, Jae-Hak
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.361-372
    • /
    • 2008
  • A satellite tracked drifter experiment was conducted to observe thermal structure and surface circulation in the northeastern East China Sea. For this experiment, four ADOS buoys, assembled with surface float and thermister chain, were deployed on August 2007 in southern Jeju-do, where the Kuroshio Branch Current is separated from the main stream. Thermal structure in the upper layer of the northeastern East China Sea was successfully observed during the following $1{\sim}3$ months. Strong thermo-haline front in a northeast-southwest direction was observed. In the frontal zone, warm and saline Kuroshio origin water intermixes with fresher coastal water and flows toward the Korean Strait. Typhoon Nari, which passed over the East China Sea 20 days after commencement of study, caused distinct signals in the thermal structure and trajectory of buoys. During the typhoon, surface temperature abruptly dropped to about $4^{\circ}C$, while the thermocline formed at $30{\sim}50$ m depth vanished due to strong vertical mixing. Internal inertial oscillation occurred several days after the typhoon. The fortuitous occurrence of typhoon Nari showed that ADOS buoys can provide useful and accurate air-sea interaction data during typhoons.