• Title/Summary/Keyword: 위성방열판

Search Result 26, Processing Time 0.033 seconds

검증용 위성 열모델을 이용한 위성 방열판 최적설계

  • Kim, Hui-Gyeong;Choe, Seong-Im
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.174.2-174.2
    • /
    • 2012
  • 위성의 방열판 설계 과정은 수치해석을 위해 위성을 모델링한 열모델에서 분할 격자인 노드를 기준으로 방열판 위치와 형상, 크기를 조절하면서 한계 온도조건을 만족할 때까지 설계 엔지니어의 판단에 의존하여 열해석을 반복하는 것이 보편적인 방식이다. 대부분 방열판 면적을 줄이기 위한 추가적인 노력을 하지 않기 때문에 필요 이상의 과도한 방열판 설계를 하는 경우가 많은 것이 사실이다. 이러한 방열판 설계에서 최소한의 방열판 면적을 사용하여 한계 온도를 만족하도록 설계를 최적화 한다면 무엇보다 전체 위성 열설계의 효율성과 경제성을 높일 수 있는 바탕이 될 수 있을 것이다. 위성의 방열판 설계는 방열판 영역 내에서 동일한 면적을 가지더라도 위치나 형상에 따라 그 효과가 상당히 차이가 날 수 있기 때문에 실제 방열판 설계에서는 이러한 점을 고려하는 것이 필수적이다. 먼저 위성은 열해석에 알맞는 격자 크기로 분할된 노드로 이루어진 열모델로 모델링되어 개발된다. 방열판이 설계되는 방열판 영역 역시 격자 모양의 노드로 분할되기 때문에 열해석을 이용하여 방열판 설계를 한다면 노드 크기를 기준으로 노드 분할 형태에 따라 설계를 한다. 그래서 위성 열모델에서 방열판 영역의 각 노드가 방열판 노드 여부에 따라 모자이크와 같은 분포의 방열판 설계를 하게 되므로 방열판 노드 분포의 최적화가 방열판 최적 설계를 의미하게 된다. 본 연구에서는 방열판 설계 최적화를 위해 일반적인 위성 프로그램의 열제어 개발에서 사용하는 위성 열모델과 열해석 프로그램을 최적화 기법과 동일한 언어로 다시 개발해야 하는 부담 없이 그대로 최적화 기법과 연동할 수 있도록 하는 방법을 제안하고, 실제 소형의 검증용 위성 열모델을 개발하여 여러 가지 해석 조건에 따른 방열판 최적 설계 결과를 비교하고 검토함으로써 이러한 접근 방식을 검증해보고자 하였다.

  • PDF

Spacecraft Radiator Design Optimization Approach of Combining Optimization Algorithm with Thermal Analysis (최적화알고리즘과 열해석을 통합한 위성방열판 설계의 최적화 방법에 관한 연구)

  • Kim, Hui-Kyung
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.24-29
    • /
    • 2013
  • A spacecraft radiator is a thermal control method to eject internally dissipated heat into the space generated from operation of unit boxes. The efficiency of thermal design may be improved by optimizing radiator design. In this paper, the optimization approach method of node-based radiator design was suggested which is to combine numerical thermal analysis with optimization algorithm. This method has meaning that it can be used practically to implement the spacecraft radiator design regardless of thermal analysis and optimization algorithm software and maintain the same basic concept of an ordinary radiator design approach based on node division of a thermal model. The overall analysis framework with thermal analysis and optimization algorithm would be presented.

A Study on Variable Conductance Radiator using Liquid Metal for Highly Efficient Satellite Thermal Control (인공위성의 고효율 열제어 구현을 위한 액체금속형 가변 전도율 방열판에 관한 연구)

  • Park, Gwi-Jung;Go, Ji-Seong;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.66-72
    • /
    • 2019
  • The observation satellites which uses high heat-dissipating equipment such as synthetic aperture radar (SAR) satellites require a radiator to transmit heat from the equipment into outer space. However, during cold conditions it requires a heater to maintain the temperature of equipment within the allowable minimum limit when it is not in operation. In this study, we proposed a variable conductivity radiator that changes its thermal conductivity value through movement of the liquid metal between two reservoirs based on the temperature condition. This reduces the power consumption of the heater by limiting heat transfer path to the radiator in cold condition, while effectively transferring heat to the radiator during hot condition. The feasibility of the proposed radiator was validated through comparison of the thermal control performance with the conventional fixed conductivity radiator via a thermal analysis.

Analysis on the View Factor of Data Storage and Handling Units's Radiators (자료처리/저장장치 방열판의 View Factor 분석)

  • Hwang, Inyoung;Shin, Somin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.678-685
    • /
    • 2017
  • The radiator of the data storage and handling units onboard the earth observation satellite is a groove-type radiator covered with a shield because of the periodic high heat dissipation and design characteristics of arrangement and mountability of the unit. The effect of the groove-type radiator and that of the shield versus plane radiator were verified through the thermal vacuum test. Through the test result, the temperatures of the radiator and the heat exchange due to the view factor were analyzed by using the analytical method. Conclusively the thermal performance of the shield dissipation plate was verified.

Thermal Characteristics Investigation of 6U CubeSat's Deployable Solar Panel Employing Thermal Gap Pad (열전도 패드가 적용된 6U 큐브위성용 태양전지판의 열적 특성 분석)

  • Kim, Hye-In;Kim, Hong-Rae;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.51-59
    • /
    • 2020
  • In the case of cubesat, a PCB-based deployable solar panel advantageous in terms of weight reduction and electrical circuit design is widely used considering the limited weight and volume of satellites. However, because of the low thermal conductivity of PCB, there is a limit relative to heat dissipation. In this paper, the thermal gap pad is applied to the contact between the PCB-based solar panel and the aluminum stiffener mounted on the outside of the panel. Thus, the heat transfer from the solar cell to the rear side of the panel is facilitated. It maximizes the heat dissipation performance while maintaining the merits of PCB panel, and thus, it is possible to improve the power generation efficiency from reducing the temperature of the solar cell. The effectiveness of the thermal design of the 6U cubesat's deployable solar panel using the thermal gap pad has been verified through on-orbit thermal analysis based on the results, compared with the conventional PCB-based solar panel.

Thermal Design and Analysis for Space Imaging Sensor on LEO (지구 저궤도에서 운용되는 영상센서를 위한 열설계 및 열해석)

  • Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.474-480
    • /
    • 2011
  • Space Imaging Sensor operated on LEO is affected from the Earth IR and Albedo as well as the Sun Radiation. The Imaging Sensor exposed to extreme environment needs thermal control subsystem to be maintained in operating/non-operating allowable temperature. Generally, units are periodically dissipated on spacecraft panel, which is designed as radiator. Because thermal design of the imaging sensor inside a spacecraft is isolated, heat pipes connected to radiators on the panel efficiently transfer dissipation of the units. First of all, preliminary thermal design of radiating area and heater power is performed through steady energy balance equation. Based on preliminary thermal design, on-orbit thermal analysis is calculated by SINDA, so calculation for thermal design could be easy and rapid. Radiators are designed to rib-type in order to maintain radiating performance and reduce mass. After on-orbit thermal analysis, thermal requirements for Space Imaging Sensor are verified.

A STUDY OF ANALYTIC METHOD AND NUMERICAL SIMULATION FOR CONCEPTUAL DESIGN OF BUS RADIATOR AND HEATER POWER OF COMS (COMMUNICATION, OCEAN AND METEOROLOGICAL SATELLITE) (통신해양기상위성 본체 방열판 및 히터 개념설계를 위한 해석적 방법 및 수치모사 연구)

  • Kim Jung-Hoon;Jun Hyung Yoll;Yang Koon-Ho
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.63-69
    • /
    • 2005
  • The COMS, the first meteorological geostationary satellite in Korea, is under development by KARI. The radiator size and the heater power for the thermal control of COMS are calculated using an analytic method. The total radiator area of $4.85\;m^2$ and the total heater power of 794.77 W are determined at a conceptual design of COMS. The commercial software, SINDA and TRASYS, are utilized in order to compare and verify the analytic results. The results of on-orbit numerical simulation of cold and hot cases show that the radiator size and heater power obtained from the analytic method are appropriate to maintain COMS equipments within required temperature ranges.

Study on the Satellite Thermal Control Hardware Composed of Two Parallel Channels Working for Heat Pipe and Phase Change Material (열관과 상변화물질을 일체형으로 병렬 배열한 위성용 열제어 부품 연구)

  • Kim, Taig-Young;Hyun, Bum-Seok;Lee, Jang-Joon;Rhee, Ju-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1087-1093
    • /
    • 2010
  • The satellite thermal control H/W composed of two parallel channels working for heat pipe (HP) and phase change material (PCM) is suggested for the high heat dissipating component which works intermittently with short duty. In a limited point of view, the HP-PCM device is a kind of off-the-shelf component that requires no dedicated configuration and thermal designs to PCM. Therefore, it can be used with less impact on the program cost and schedule different from most of the PCM applications. In present study the typical honeycomb structure radiator applying the HP-PCM device is designed and the detail thermal math model is developed for numerical analyses. The result comparison between without and with PCM shows that the HP-PCM device redistributes the peak heat around the whole mission period through the alternate melting and freezing of PCM, and, as a result, the maximum and minimum temperatures are effectively alleviated. The drawback of PCM application due to low thermal conductivity can be successfully resolved by means of parallel arrangement of HP channel.

Heater Design of a Cooling Unit for a Satellite Electro-Optical Payload using a Thermal Analysis (열해석을 이용한 위성 광학탑재체 냉각 장치의 히터설계)

  • Kim, Hui-Kyung;Chang, Su-Young;Choi, Seok-Weon
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.20-28
    • /
    • 2011
  • The electro-optical payload of a low-earth orbit satellite is thermally decoupled with the bus, which supports a payload for a mission operation. The payload has a cooling unit of FPA(Focal Plane Assembly) which has a thermal behavior increasing its temperature instantly during an operation in order to dissipate a waste heat into the space. The FPA cooling unit should include a radiator and heatpipes with a sufficient performance in worst hot condition, and a heater design to maintain its temperature above a minimum allowable temperature in the worst cold condition. In this paper, we analyzed the thermal requirements and the heater design constraints from the thermal analysis results for the current thermal design of the FPA cooling unit and the design elements of the better heater design were found.