• 제목/요약/키워드: 위성궤도오차

검색결과 207건 처리시간 0.022초

정지궤도위성을 이용한 표준 시각/주파수 전송 시스템의 동기오차 보정 기술

  • 이기훈;최진욱;김진대;서종수
    • 정보와 통신
    • /
    • 제17권6호
    • /
    • pp.100-114
    • /
    • 2000
  • 본 논문은 정지궤도위성을 이용한 표준시각/주파수 전송시스템의 동기 오차 요인을 분석하고, 한국과 같이 영토가 작은 국가의 경우, 정지궤도 위성을 이용하는 방식의 이점을 단파 또는 광 전용망을 이용하는 지상망 방식, 그리고 저궤도 위성을 이용하는 GPS방식과 비교 분석한다. 또한, 본 논문은 현재 서비스를 제공 중이거나 연구가 진행중인 단방향 위성 시각 전송 서비스를 고찰하고 특히, 무궁화 위성을 이용한 고정밀도의 표준시각/주파수 전 송서비스를 제공하기 위해 요구되는 동기오차 보정기술에 관하여 연구한다. 국가적 통신망 동기를 위한 표준 시각/주파수의 동기 정확도를 만족시킬 수 있는 효과적인 동기 오차 보정 방식으로 차동(differential mode)보정방식을 제안하고 그 성능을 분석하였으며 시각 정확도 와 주파수 정확도의 관계를 분석하였다. 모의실험 결과, 정상적인 시스템 운영하에서 시각 정확도와 주파수 정확도는 각각 100ns(95%)와 10-11(7일이상) 보다 우수한 것으로 분석되었 으며 본 논문에서 제시한 성능 개선 방안을 적용함으로써 보다 높은 정확도의 시각/주파수 동기가 가능함을 확인하였다.

  • PDF

방송궤도력과 IGS RTS의 정확도 분석 (An Accuracy Analysis on the Broadcast Ephemeris and IGS RTS)

  • 김민규;김정래
    • 한국항행학회논문지
    • /
    • 제20권5호
    • /
    • pp.425-432
    • /
    • 2016
  • 사용자 위치 추정 시 위성 궤도는 GPS에서 송신하는 방송궤도력을 주로 이용하는데, 이를 이용할 경우 수 미터의 오차를 유발하기 때문에 높은 정확도가 필요한 분야에서는 사용할 수 없다. 오차를 유발하는 요소 중 위성 궤도와 시계에 의한 오차는 IGS에서 제공하는 RTS (real-time service)로 보정할 수 있다. 본 논문에서는 3개월간 방송궤도력과 RTS 보정정보의 궤도 및 시계 정확도를 분석하였다. IGS final을 기준으로 단일 위성과 전체 위성의 3개월간 궤도 및 시계 오차 분석을 수행하였으며, 사용자의 위치와 위성의 종류에 따른 오차 변화도 분석하였다. 그림자 조건, 태양활동, 지자기활동과 오차들과의 상관관계도 분석하였다. 보정정보에 지연시간을 적용하고 이를 다항식으로 모델링한 후 외삽하여 실제 RTS 보정정보와 궤도 및 시계정확도를 비교하였다. 방송궤도력과 RTS 보정정보가 적용된 방송궤도력으로 데이터로 PPP를 수행하고 1일 위치 추정성능을 분석하였다. 그 결과 RTS 적용 시 3D 궤도오차와 시계 오차는 방송궤도력의 1/20, 1/3 수준이었으며, 위치해의 3D 오차는 방송궤도력의 1/5 수준으로 나타났다.

정지궤도 위성의 탑재 궤도 생성 알고리듬 개발 (Development of Onboard Orbit Generation Algorithm for GEO Satellite)

  • 임조령;박봉규;박영웅;최홍택
    • 항공우주기술
    • /
    • 제13권2호
    • /
    • pp.7-17
    • /
    • 2014
  • 본 기술논문은 정지궤도위성의 탑재 궤도 생성 알고리듬 개발에 대하여 다루고 있다. 정지궤도위성 실시간 궤도 생성에 사용되었던 기존 알고리듬의 정밀도를 향상시키기 위한 연구 결과를 제시하였다. 여기서 제시한 알고리듬을 토대로 궤도 오차 요인들의 영향성 분석을 수행하였다. 분석 결과, 초기 궤도 결정 오차가 50 m 이내이고, 지상시스템과 탑재 컴퓨터에서 사용되는 위성위치각 (sidereal oscillator) 오차가 ${\pm}0.0025deg$ 이내로 유지되어야만 궤도 요구조건을 만족함을 알 수 있었다. 본 알고리듬에 대한 탑재코드 개발이 이루어졌으며, 소프트웨어 기반 검증 시뮬레이터를 사용한 성능 검증이 수행되고 있다.

아리랑위성 2호 영상촬영계획 궤도예측 정밀도 분석 (Analysis on the Orbit Prediction Accuracy of the Image Collection Planning for KOMPSAT-2)

  • 정옥철;김해동;정대원
    • 항공우주기술
    • /
    • 제7권1호
    • /
    • pp.223-228
    • /
    • 2008
  • 본 논문에서는 아리랑위성 2호의 영상촬영 계획 절차를 살펴보고, 각 단계에서 발생할 수 있는 궤도예측 오차를 분석하였다. 이를 위해 영상촬영 계획을 수립하는 PSS와 명령계획을 작성하는 MAPS에서 각각 계산된 자세정보를 상호 비교하여 궤도예측 오차의 원인을 규명하였다. 또한, 아리랑위성 2호의 실제 영상자료를 이용하여 촬영된 영상의 중심점과 미리 계획된 목표지점 사이의 이탈거리인 촬영 지향오차를 계산하였다. 영상촬영 계획은 실제 촬영일보다 이전에 수행되어 궤도예측 오차를 어느 정도 포함하게 되므로, 영상촬영 계획 시 일정한 Margin을 적용해야 할 것으로 판단된다.

  • PDF

중.고궤도 인공위성 및 폐기위성의 광학관측을 이용한 궤도 결정 (Orbit Determination Using Angle-Only Data for MEO & GEO Satellite and Obsolete)

  • 최진;김방엽;임홍서;장헌영;윤요나;김명진;황옥준
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권1호
    • /
    • pp.111-126
    • /
    • 2009
  • 인공위성 궤도 결정을 위해 한국천문연구원의 0.6m 광시야 망원경을 이용하여 중 고궤도 인공위성과 폐기위성을 관측하였다. 관측 자료는 영상처리 및 좌표 보정을 통해 장착기기에 의한 오차를 보정한다. 위성 관측 사료에서 얻은 좌표 정보는 관측 시스템의 불안정성과 끝점 결정 오차에 의해 13각초의 오차를 가진다. KODAS의 결과로 얻은 시뮬레이션 좌표와 Gauss 방법을 이용해 예비궤도 결정을 수행하고 궤도 결정에 적합한 시간 간격을 찾아보았다. 또한 미분보정을 통한 예비궤도 결정 결과의 향상을 확인하였다. 이들 결과를 평균궤도요소 형대로 변환하여 실제 관측 자료와 비교하여 에비궤도 결정을 통해서 짧은 시간동안 위성의 추적이 가능함을 확인하였으며, 미분보정을 통해 그 결과를 향상시킬 수 있음을 확인하였다.

다목적 실용위성의 궤도 결정 오차 분석 (Orbit Determination Error Analysis for the KOMPSAT)

  • 이정숙;이병선
    • Journal of Astronomy and Space Sciences
    • /
    • 제15권2호
    • /
    • pp.437-447
    • /
    • 1998
  • 한반도의 지도 제작을 주임무로 1999년에 발사될 다목적 실용위성의 궤도 오차를 GPS 항행 해와 지상 안테나의 추적 데이터를 이용하여 분석하였다. 측정 데이터의 잡음과 모델 링의 오차를 고려하여 최소 자승 방법으로 궤도 결정과 예측 오차를 시뮬레이션 하였다. 측정 데이터의 잡음은 단기간 오차의 주 요인이 되며, 태양 플럭스의 불확실성으로 인한 오차가 궤도 예측 오차에 가장 크게 작용함을 알 수 있었다.

  • PDF

정지궤도 복합위성 탑재용 궤도정보 생성기 정밀도 해석 (Accuracy Analysis of GEO-KOMPSAT-2 Onboard Orbit Generator)

  • 박봉규;최재동;안상일;김방엽
    • 항공우주기술
    • /
    • 제11권2호
    • /
    • pp.19-25
    • /
    • 2012
  • 정지궤도복합위성은 천리안위성에 비하여 고품질의 영상품질을 요구하며 지구센서 대신 별센서의 사용으로 인하여 고정밀의 탑재용 궤도정보생성이 요구된다. 이는 고정밀의 궤도 결정이 바탕이 되어야 한다. 천리안위성의 경우는 항공우주연구원에 설치된 추적 안테나를 이용하여 레인징을 수행하고 이를 바탕으로 궤도결정을 수행하였다. 정지궤도복합위성의 정밀한 궤도결정을 위하여 항공우주연구원에서는 축섬에 새로운 추적장비를 준비중에 있다. 본 논문에서는 대전과 축섬에 위치한 정지궤도복합위성을 가정하여 궤도결정을 수행했을 경우 궤도결정 및 예측 오차와 테이블 방식의 탑재용궤도정보 생성기의 궤도정밀도를 분석하였다. 본 논문에서는 공분산해석과 수치적인 방법을 통하여 궤도정밀도를 해석하였다. 두 해석결과를 종합하여 최종적인 궤도오차를 산출하였다.

자이로 바이어스 추정값을 이용한 센서 정렬오차 확인

  • 오시환;윤석택;윤형주;김진희
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.183.1-183.1
    • /
    • 2012
  • 인공위성의 자세 제어 및 자세 결정에 사용되는 센서들의 정렬오차는 자세명령생성 오차, 자세제어 오차, 자세결정 오차 등과 더불어 지향정밀도를 저하시키는 하나의 요인으로 작용한다. 본 연구에서는 자이로 센서에만 정렬오차가 존재한다고 가정하는 상황에서 별추적기와 자이로 센서를 이용한 자세결정 필터에 의해 추정되는 자이로 바이어스 값만을 이용하여 자이로 센서의 정렬오차를 확인(Identification)하는 방법 및 결과에 대해 기술한다. 이를 추정하는 다른 방법으로는 여러 가지가 있으며 대표적으로 위성의 다축기동 정보를 입력으로 사용하는 확장칼만필터를 이용한 궤도상 보정(On-orbit Calibration) 방법이 있으나 본 연구에서는 위성의 기동 또는 많은 계산량을 소모하지 않고 비교적 간단하게 자이로 정렬오차를 추정하는 방법을 제시하였다. 그리고 실제 궤도상 위성의 거동 데이터를 이용하여 제안한 방법의 효율성을 검증하였다. 결과적으로, 제안된 방법을 이용했을 때 소수점 둘째 자리 이하의 정확도를 가지고 정렬오차가 추정됨을 확인하였다.

  • PDF

기준국 네트워크 선정에 따른 GNSS 광역보정시스템 성능 분석

  • 한덕화;윤호;기창돈
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2013년도 춘계학술대회
    • /
    • pp.108-110
    • /
    • 2013
  • GPS 신호에는 여러 가지 오차가 포함되어 사용자가 이를 그대로 이용할 경우 높은 정확도의 위치를 얻을 수 없다. 따라서 신호의 오차를 제거하고 높은 위치 정확도를 얻기 위하여 여러 가지 보정시스템들이 개발되어왔다. 그 중에서 광역보정시스템은 여러 개의 기준국 네트워크로부터 데이터를 수집하여 3차원 위성궤도 오차, 위성 시계오차, 서비스 지역의 전리층 지연 오차를 추정하여 사용자에게 보정정보를 제공한다. 사용자는 보정정보를 수신하여 자신의 위치에 맞는 오차정보를 계산하여 정확도를 높일 수 있다. 이러한 광역보정시스템의 성능은 기준국의 배치에 따라 차이를 보일 수 있으므로 적절한 기준국 선정을 위해서는 기준국 네트워크 변화에 따른 성능 분석이 필수적이다. 본 논문에서는 국토해양부 NDGPS 기준국 중에서 후보군을 선정한 후 시뮬레이션을 통하여 기준국 네트워크 변화에 따른 사용자 정확도, 가용성을 분석하였다. 그리고 실제 기준국에서 수집된 측정치를 처리하여 성능분석을 수행하였다.

  • PDF

GLONASS 위성 가시성 분석을 위한 방송궤도력 기반 궤도 예측 (Orbit Prediction using Broadcast Ephemeris for GLONASS Satellite Visibility Analysis)

  • 김혜인;박관동
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권2호
    • /
    • pp.199-210
    • /
    • 2009
  • 다양한 위성항법시스템이 개발 중이지만 현재 측위에 사용 가능한 것은 GPS와 GLONASS 뿐이다. 이 연구에서는 GLONASS의 궤도력 중에서 방송궤도력을 이용하여, 위성의 운동을 나타내는 미분방정식을 4차 Runge-Kutta 방법으로 수치적분하여 위성궤도를 예측하고, 그 정 확도를 평가하였다. 생성한 예측지도는 정밀궤도력과 비교하여 정확도를 검증하였는데, 1일간의 예측궤도와 7일간의 예측제도의 3차원 최대오차는 각각 17.4km, 40.1km로 나타났으며, RMS 오차는 각각 14.3km, 15.7km로 나타났다. 또한 예측제도를 이용하여 산출한 가시위성의 개수와 실제관측 결과를 비교하였다. 그 결과, 관측지점의 주변 건물에 의한 영향으로 발생하는 차이를 제외하고 결과가 일치하는 것을 확인하였다.