• Title/Summary/Keyword: 위상배열 초음파검사

Search Result 43, Processing Time 0.026 seconds

A Development of diagonostic technique for generator rotor wedge by phased array UT (발전기 회전자웨지 위상배열 초음파진단 기법)

  • Cho, Yong-Sang;Mun, Kyeong-Hee;Kong, Tae-Shik
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.902-903
    • /
    • 2011
  • 발전설비에 대한 비파괴 검사 기술은 발전소 운전 신뢰성 및 안전성 유지확보 그리고 건전성을 보장하기 위한 필수적인 기술이다. 이 설비 중 터빈, 보일러 등 주요 발전설비에 대한 초음파 검사는 매우 신중하고 정확하게 검사할 필요성이 있으나, 일반적 초음파 검사방법으로는 불가능한 부분이 많고 일부분에 대해서는 이를 외국 제작사 기술용역에 의존하고 있는 실정이다. 특히 발전기 로타 웨지와 같이 재질상 감쇄가 심한 재료에 대해서는 검사 자체가 어렵고, 지금의 초음파 검사 방법으로는 결함의 크기나 형태를 파악하기도 어려워 이에 대한 개선책이 시급한 실정이다. 최근에 개발이 시작된 Phased Array UT분야는 발전설비중 접근자체가 어렵고, 형상이 복잡하여 결함의 탐지 및 평가가 힘든 부분에 적용하면 검사신뢰도 및 신속성을 향상시킬 수 있으며 접근성에 대한 제한 또한 감소시킬 수 있다. 따라서 본 논문은 발전기 부품에 발생하는 일반적인 결함에 대하여 Phased array UT 기술을 도입하여 신호의 특성을 분석하는 결과평가에 도음이 되고자 하였다.

  • PDF

Non-Destructive Testing of Damaged Thermoplastic Pipes Electrofusion Joints Using Phased Array Ultrasonic (위상배열초음파를 이용한 손상된 열가소성 플라스틱배관 전기융착부 비파괴검사)

  • Kil, Seong-Hee;Kim, Byung-Duk;Kwon, Jeong-Rock;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.64-68
    • /
    • 2013
  • Non destructive testing(NDT) methods of electrofusion(EF) joints of thermoplastics pipes are required for fusion joint safety and for the long term reliability of a pipe system. Electrofusion joints, which are joined at the proper fusion process and procedures, may encounter defects due to the difference of ovality between pipes and coupling, improper fusion process or porosity result from electrofusion joining. These defects can cause the failure of pipeline and by extension, they can be caused the limit to expand the use of plastics pipes. This paper studies inspection results using ultrasonic imaging method for damaged polyethylene electrofusion joints. Gas was leaking from 250mm diameter polyethylene electrofusion joints at February 2004 which was electrofused at December 1994 and operation pressure was 2.45kPa. First, surface inspection was conducted and then in order to find the types of defects examination using ultrasonic imaging method was performed. Lack of fusion and inappropriate inserting for polyethylene pipes into electrofusion coupling were found and causes of the gas leak were judged that misalignment and insert defect. Cutting inspection was performed and each inspection results were compared to. Results of ultrasonic imaging method and cutting inspection were the same.

Development of Phased Array Ultrasonic Testing Technique for Nuclear Power Plant Cast Piping Weld (원자력발전소 주조 배관 용접부 위상배열 초음파검사 기술 개발)

  • Yoon, Byungsik;Yang, Seunghan;Kim, Yongsik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • Cast austenitic stainless steel(CASS) is used in the primary cooling piping system of nuclear power plant for it's relative low cost, corrosion resistance and easy of welding. However, the coarse-grain structure of cast austenitic stainless steel can strongly affect the inspectability of ultrasonic testing. The major problems encountered during inspection are beam skewing, high attenuation and high background noise of CASS component. So far, the best inspection performance involving CASS components have been achieved using low frequency TRL(Transmitter/Receiver side-by-side L wave) angle beam probe. But TRL technique could not detect shallow defect and it contains an uncertainty for sizing capability. Currently, most of researchers are studying to overcome these challenge issue. In this study, low-frequency phased array TRL technique used to detect and sizing the flaws in CF8A cast austenitic stainless steel.As conclusion, we could detect and size not only axial flaw but also circumferential flaw using low frequency phased array technique.

  • PDF

Realtime Identification of the Propagation Direction of Received Echoes in Long-Range Ultrasonic Testing (원거리 초음파검사에서 수신에코 진행방향의 실시간 식별)

  • Choi, Myoung Seon;Heo, Won Nyoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.69-72
    • /
    • 2013
  • In long-range ultrasonic testing, a phased array probe composed of multiple identical transducers with an uniform interval of one quarter wavelength is usually used for the transmission or reception directivity control. This paper shows that the propagation directions of individual echoes can be identified in real time by displaying the inputs of a process for summing the constitution reception signals after compensating the phase difference due to the transducer interval, together with the output of the process. A constructive interference of the constitution echoes indicates a forward direction echo propagating along an intended direction while a destructive interference implies a reverse direction echo propagating along the direction opposite to the intended one.

Feasibility Study for Low Pressure Turbine Inspection of Nuclear Power Plant Using Shear Wave Phased Array Ultrasonic Transducer (횡파 위상배열 초음파탐촉자를 이용한 원자력발전소 저압 터빈 검사 적용 타당성 연구)

  • Yoon, Byung Sik;Kim, Yong Sik;Kim, Jin Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • Steam turbine blades and discs of nuclear power plants are one of the most highly stressed areas of turbine rotor, and periodic inspection of the blade roots is essential for monitoring integrity and preventing turbine failure. Ultrasonic technique is applied for volumetric inspection of blade root. However, the complexity of blade root geometry imposes challenges to inspection of blades and discs. Recently, phased array ultrasonic inspection technology is being applied to numerous power generation inspection applications including turbine rotor. The phased array ultrasonic technique requires customized inspection wedges which are generally necessary to generate effectively higher incident angle. But the usage of this wedge can cause access limitation for the lower stage blades of turbine because of the wedge front length. Therefore, the shear wave phased array probe which can generate high inspection angle without wedge is essentially necessary. In this study, feasibility study is conducted for the shear wave phased array ultrasonic probe application to blade and disc inspection. As results, the experimental results show that the shear wave phased array probe can detect the flaw and measure its size with reliable accuracy. Therefore if this shear wave phased array probe is applied to field inspection of blade and disc, more reliable inspection is expected for turbine having access limitation.

Nondestructive Inspection of Steel Structures Using Phased Array Ultrasonic Technique (위상배열 초음파기법을 이용한 강구조물의 비파괴 탐상)

  • Shin, Hyeon-Jae;Song, Sung-Jin;Jang, You-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.538-544
    • /
    • 2000
  • A phased array ultrasonic nondestructive inspection system is being developed to obtain images of the interior of steel structures by modifying a medical ultrasound imaging system. The medical system consists of 64 individual transceiver channels that can drive 128 array elements. Several modifications of the system were required mainly due to the change of sound speed. It was necessary to fabricate array transducers for steel structure and to obtain A-scan signal that is necessary for the nondestructive testing. Boundary diffraction wave model was used for the prediction of radiation beam field from array transducers, which provided guidelines to design array transducers. And a RF data acquisition board was fabricated for the A-scan signal acquisition along a selected un line within an image. For the proper beam forming in the transmission and reception for steel structure, delay time was controlled. To demonstrate the performance of the developed system and fabricated transducers, images of artificial specimens and A-scan signals for selected scan lines were obtained in a real time fashion.

  • PDF

Fabrication of Phased Array EMAT and Its Characteristics (위상배열 EMAT의 제작 및 특성 평가)

  • Ahn, Bong-Young;Cho, Seung-Hyun;Kim, Young-Joo;Kim, Ki-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.373-379
    • /
    • 2010
  • EMAT has been applied in various fields for flaw detection and material characterization because it has noncontact property in wave generation and a good mode selectivity. Unfortunately, however, EMAT shows low signal to noise ratio relative to commercial contact transducer because of low energy conversion efficiency. If the phase matching through the control of time delay between each coil consisting of the array EMAT is accomplished, it is expected that it will be a solution for the improvement of low signal to noise ratio. In this experiment, the phased array EMATs which consists of 3 or 4 meander coils and one big magnet were fabricated for surface and vertical shear wave generation. Effect of phased delay control on signal directivity and amplitude enhancement was verified. A slit with the depth of 0.5 mm and a side-drill hole of 0.5 mm diameter were clearly detected by fabricated phased array EMATs, respectively.

Guided Wave Phased Array for Inspection of Plate Structures (유도초음파 위상배열을 이용한 판 구조물 검사)

  • Kwon, Hyu-sang;Park, Seong-Chol;Cho, Seung-Hyun;Lee, Seung-Seok;Kim, Jin-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.699-704
    • /
    • 2008
  • This paper describes a general approach for processing data from an omni-directional guided wave transducer array for the rapid inspection of large plate structures. A basic phased array algorithm is presented that can be applied to any array Geometry. For guided waves on plate, beam steering algorithm is derived and the corresponding beam pattern is analyzed. The algorithms are applied to simulation and experimental data. The results show well its usefulness in structural applications.

  • PDF

Evaluation Technology for the Flaw Sizing of Generator Rotor by Using Phased Array Ultrasonic Technique (위상배열 초음파기법을 이용한 발전기 로터 결점크기 평가)

  • Kim, Jin-Hoi;Park, Cher-Young;Lee, Sang-Hoon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.1
    • /
    • pp.14-19
    • /
    • 2009
  • NDE(Nondestructive examination) detects a flaw or discontinuity in materials. Flaws detected by the examination shall be evaluated for the decision basis of the integrity. The internal flaws of forging products can be detected by UT. However, UT has detection limits because of its reflected signal weakness. Normally, a 1mm or less flaw is known as the limit. If a flaw was detected, the size of flaw would be evaluated by AVG(or DGS) technique. To verify the evaluation data, alternative examination methods are needed. But there is no alternative examination methods until now. In this study, Phased array ultrasonic technique can be used to size the flaws in the generator rotor with focused beam of ultrasonic wave as a supplement method of AVG. Also, the phased array ultrasonic technique described enables the shape of flaw to be depicted exactly.

  • PDF