• Title/Summary/Keyword: 웹개발 플랫폼

Search Result 487, Processing Time 0.028 seconds

Developing an Endangered Species Habitat Management System based on Location Information (위치정보 기반 멸종위기종 서식지 관리시스템 개발)

  • Kim, Sun-Jib;Kim, Sang-hyup
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.67-73
    • /
    • 2020
  • The research status of endangered amphibians in Korea was mainly studied the life-cycle and distribution status of species from the 1980s to the early 2000s. Although a relatively diverse range of studies have been conducted on mackerels, studies on habitat prediction, analysis, change and management are insufficient. WEB, which provides biota information using location information in Korea, is a site operated by the National Bio Resource Center under the Ministry of Environment, but there is no information on endangered species and general species information has also been found to be very scantily. For this research, we secured a database of location information of Narrow-mouth frog, an endangered species, by combining literature and field research, and established a system by applying new technologies and open-based platform technologies that can be easily accessed by non-technical personnel of IT among IT technologies. The system was divided into administrator functions and user functions to prevent indiscriminate sharing of information through authentication procedures through user membership of users. The established system was authorized to show the distance between the current location and the location of the Narrow-mouth frog. Considering the ecological characteristics of the Narrow-mouth frog, which is an endangered species, a radius of 500m was marked to determine the habitat range. The system is expected to be applied to the legal system to change existing protected areas, etc. and to select new ones. It is estimated that practical reduction measures can be derived by utilizing the development plan for reviewing the natural environment. In addition, the deployed system has the advantage of being able to apply to a wide variety of endangered species by modifying the information entered.

A Construction of the C_MDR(Component_MetaData Registry) for the Environment of Exchanging the Component (컴포넌트 유통환경을 위한 컴포넌트 메타데이타 레지스트리 구축 : C_MDR)

  • Song, Chee-Yang;Yim, Sung-Bin;Baik, Doo-Kwon;Kim, Chul-Hong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.6
    • /
    • pp.614-629
    • /
    • 2001
  • As the information-intensive society in 21c based on the environment of global internet is promoted, the software is getting more large and complex, and the demand for the software is increasing briskly. So, it becomes an important issue in academic and industrial field to activate reuse by developing and exchanging the standardized component. Currently, the information services as a product type of each company are provided in foreign market place for reusing a commercial component, but the components which are serviced in each market place are different, insufficient and unstandardized. That is, construction for Component Data Registry based on ISO 11179, is not accomplished. Hence, the national government has stepped up the plan for sending out public component at 2001. Therefore, the systems as a tool for sharing and exchange of data, have to support the meta-information of standardized component. In this paper, we will propose the C_MDR system: a tool to register and manage the standardized meta-information, based upon ISO 11179, for the commercialized common component. The purpose of this system is to systemically share and exchange the data in chain of acceleration of reusing the component. So, we will show the platform of specification for the component meta-information, then define the meta-information according to this platform, also represent the meta-information using XML for enhancing the interoperability of information with other system. Moreover, we will show that three-layered expression make modeling to be simple and understandable. The implementation of this system is to construct a prototype system of the component meta-information through the internet on www, this system uses ASP as a development language and RDBMS Oracle for PC. Thus, we may expect the standardization of the exchanged component metadata, and be able to apply to the exchanged reuse tool.

  • PDF

An Integrated Processing Method for Image and Sensing Data Based on Location in Mobile Sensor Networks (이동 센서 네트워크에서 위치 기반의 동영상 및 센싱 데이터 통합 처리 방안)

  • Ko, Minjung;Jung, Juyoung;Boo, Junpil;Kim, Dohyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.65-71
    • /
    • 2008
  • Recently, the research is progressing on the SWE(Sensor Web Enablement) platform of OGC(Open Geospatial Consortium) to provide the sensing data and moving pictures collected in a sensor network through the Internet Web. However, existed research does not deal with moving objects like cars, trains, ships, and person. Therefore, we present a method to deal with integrated sensing data collected by GPS device, sensor network, and image devices. Also, this paper proposes an integrated processing method for image and sensing data based on location in mobile sensor networks. Additionally, according to proposed methods, we design and implement the combine adapter. This combine adapter receives a contexts data, and provides the common interface included parsing, queueing, creating unified message function. We verity the proposed method which deal with the integrated sensing data based on combine adapter efficiently. Therefore, the research is expected to help the development of a various context information service based on location in future.

  • PDF

Implementation of a Remote Patient Monitoring System using Mobile Phones (모바일 폰을 이용한 원격 환자 관리 시스템의 구현)

  • Park, Hung-Bog;Seo, Jung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1167-1174
    • /
    • 2009
  • In the monitoring of a patient in a sickroom, not only the physiologic and environmental data of the patient, which is automatically measured, but also the clinical data(clinical chart)of the patient, which is drew up by a doctor or nurse, are recognized as important data. However, since in the current environment of a sickroom, clinical data is collected being divided from the data that is automatically measured, the two data are used without an effective integration. This is because the integration of the two data is difficult due to their different collection times, which leads the reconstruction of clinical data to be remarkably uncertain. In order to solve these problems, a method to synchronize the continuous environmental data of a sickroom and clinical data is appearing as an important measure. In addition, the increase of use of small machines and the development of solutions based on wireless communications provide a communication platform to the developers of health care. Thus, this paper realizes a remote system for taking care of patients based on a web that uses mobile phones. That is, clinical data made by a nurse or doctor and the environmental data of a sick room comes to be collected by a collection module through a wireless sensor network. An observer can see clinical data and the environmental data of a sickroom through his/her mobile phone, integrating and storing his/her data into the database. Families of a patient can see clinical data made by hospital and the environment of the sick room of the patent through their computers or mobile phones outside the hospital. Through the system,hospital can provide better medical services to patients and their families.

Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data (Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링)

  • Minju Kim;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.311-323
    • /
    • 2023
  • Oil spill accidents can cause various environmental issues, so it is important to quickly assess the extent and changes in the area and location of the spilled oil. In the case of oil spill detection using satellite imagery, it is possible to detect a wide range of oil spill areas by utilizing the information collected from various sensors equipped on the satellite. Previous studies have analyzed the reflectance of oil at specific wavelengths and have developed an oil spill index using bands within the specific wavelength ranges. When analyzing multiple images before and after an oil spill for monitoring purposes, a significant amount of time and computing resources are consumed due to the large volume of data. By utilizing Google Earth Engine, which allows for the analysis of large volumes of satellite imagery through a web browser, it is possible to efficiently detect oil spills. In this study, we evaluated the applicability of four types of oil spill indices in the area of various land cover using Sentinel-2 MultiSpectral Instrument data and the cloud-based Google Earth Engine platform. We assessed the separability of oil spill areas by comparing the index values for different land covers. The results of this study demonstrated the efficient utilization of Google Earth Engine in oil spill detection research and indicated that the use of oil spill index B ((B3+B4)/B2) and oil spill index C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5) can contribute to effective oil spill monitoring in other regions with complex land covers.

Implementation of IoT-Based Irrigation Valve for Rice Cultivation (벼 재배용 사물인터넷 기반 물꼬 구현)

  • Byeonghan Lee;Deok-Gyeong Seong;Young Min Jin;Yeon-Hyeon Hwang;Young-Gwang Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.93-98
    • /
    • 2023
  • In paddy rice farming, water management is a critical task. To suppress weed emergence during the early stages of growth, fields are deeply flooded, and after transplantation, the water level is reduced to promote rooting and stimulate stem generation. Later, water is drained to prevent the production of sterile tillers. The adequacy of water supply is influenced by various factors such as field location, irrigation channels, soil conditions, and weather, requiring farmers to frequently check water levels and control the ingress and egress of water. This effort increases if the fields are scattered in remote locations. Automated irrigation systems have been considered to reduce labor and improve productivity. However, the net income from rice production in 2022 was about KRW 320,000/10a on average, making it financially unfeasible to implement high-cost devices or construct new infrastructure. This study focused on developing an IoT-Based irrigation valve that can be easily integrated into existing agricultural infrastructure without additional construction. The research was carried out in three main areas: Firstly, an irrigation valve was designed for quick and easy installation on existing agricultural pipes. Secondly, a power circuit was developed to connect a low-power Cat M1 communication modem with an Arduino Nano board for remote operation. Thirdly, a cloud-based platform was used to set up a server and database environment and create a web interface that users can easily access.

Implementation Strategy of Global Framework for Climate Service through Global Initiatives in AgroMeteorology for Agriculture and Food Security Sector (선도적 농림기상 국제협력을 통한 농업과 식량안보분야 전지구기후 서비스체계 구축 전략)

  • Lee, Byong-Lyol;Rossi, Federica;Motha, Raymond;Stefanski, Robert
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.2
    • /
    • pp.109-117
    • /
    • 2013
  • The Global Framework on Climate Services (GFCS) will guide the development of climate services that link science-based climate information and predictions with climate-risk management and adaptation to climate change. GFCS structure is made up of 5 pillars; Observations/Monitoring (OBS), Research/ Modeling/ Prediction (RES), Climate Services Information System (CSIS) and User Interface Platform (UIP) which are all supplemented with Capacity Development (CD). Corresponding to each GFCS pillar, the Commission for Agricultural Meteorology (CAgM) has been proposing "Global Initiatives in AgroMeteorology" (GIAM) in order to facilitate GFCS implementation scheme from the perspective of AgroMeteorology - Global AgroMeteorological Outlook System (GAMOS) for OBS, Global AgroMeteorological Pilot Projects (GAMPP) for RES, Global Federation of AgroMeteorological Society (GFAMS) for UIP/RES, WAMIS next phase for CSIS/UIP, and Global Centers of Research and Excellence in AgroMeteorology (GCREAM) for CD, through which next generation experts will be brought up as virtuous cycle for human resource procurements. The World AgroMeteorological Information Service (WAMIS) is a dedicated web server in which agrometeorological bulletins and advisories from members are placed. CAgM is about to extend its service into a Grid portal to share computer resources, information and human resources with user communities as a part of GFCS. To facilitate ICT resources sharing, a specialized or dedicated Data Center or Production Center (DCPC) of WMO Information System for WAMIS is under implementation by Korea Meteorological Administration. CAgM will provide land surface information to support LDAS (Land Data Assimilation System) of next generation Earth System as an information provider. The International Society for Agricultural Meteorology (INSAM) is an Internet market place for agrometeorologists. In an effort to strengthen INSAM as UIP for research community in AgroMeteorology, it was proposed by CAgM to establish Global Federation of AgroMeteorological Society (GFAMS). CAgM will try to encourage the next generation agrometeorological experts through Global Center of Excellence in Research and Education in AgroMeteorology (GCREAM) including graduate programmes under the framework of GENRI as a governing hub of Global Initiatives in AgroMeteorology (GIAM of CAgM). It would be coordinated under the framework of GENRI as a governing hub for all global initiatives such as GFAMS, GAMPP, GAPON including WAMIS II, primarily targeting on GFCS implementations.