chemical mechanical Polishing (CMP)공정 중 제거된 막과 연마재의 지꺼기를 제거하기 위하여 일반적으로 사용하는 scrubbing과 같은 기계적인 세정법으로는 기가급 소자 제조시에 요구되는 $10^{10}/\textrm{cm}^2$ 이하의 오염도에 도달하기 어렵다. 따라서 이러한 기계적인 세정법에 이어 충분히 제거되지 못한 금속오염물을 제거하기 위한 2차 세정이 요구된다. 본 논문에서는 리모트 플라스마 세정법과 UV/$O_3$ 세정법을 사용하여 oxide CMP 후에 웨이퍼 표면에 많이 존재하는 K, Fe, Cu등의 금속오염물을 제거하는데 대한 연구결과를 보고하고자 한다. 리모트 수소 플라스마 세정결과에 의하면, 세정시간이 짧을 수록, rf-power가 증가할수록 세정 효과가 우수한 것으로 나타났으며, CMP 공정 후 웨이퍼 표면에 특히 많이 존재하는 금속 불순물인 K, Fe, Cu 등의 오염 제거를 위한 최적 공정 조건은 세정시간이 1분, rf-power가 100 W인 것으로 나타났다. AFM 분석 결과에 의하면 rf-power의 증가에 따라 표면 거칠기가 미소하게 증가하는데 , 이것은 플라스마에 의한 손상 때문인 것으로 보이나 그 정도는 무시할만하다. 한편, UV/$O_3$ 세정의 경우에는 세정공정시간이 30 sec일때 가장 우수한 세정효과가 얻어졌다. 리모트 수소 플라스마 및 UV/$O_3$ 세정방법에 의한 Si 웨이퍼 표면의 금속 불순물 제거기구는 Si표면 금속오염의 하단층에 생성된 $SiO_2H^+$/ 및 $e^-$와 반응하여 $SiO^*$상태로 휘발될 때 금속불순물이 $SiO^*$에 묻어서 함께 제거되는 것으로 사료된다.
도금전류밀도와 도금액 온도에 따른 비시안계 Au 범프의 표면 거칠기 및 웨이퍼 레벨에서 Au 범프의 높이 분포도를 분석하였다. $3mA/cm^{2}$와 $5mA/cm^{2}$에서 도금한 Au 범프는 $40^{\circ}C$와 $60^{\circ}C$의 도금액 온도에 무관하게 $80{\sim}100nm$의 낮은 표면 거칠기를 나타내었다. $8mA/cm^{2}$로 도금시 $40^{\circ}C$에서 도금한 Au 범프는 표면 거칠기가 800nm 정도로 크게 증가하였으나, $60^{\circ}C$에서 형성한 Au 범프는 $80{\sim}100nm$의 표면 거칠기를 나타내었다. 도금전류밀도가 $3mA/cm^{2}$에서 $8mA/cm^{2}$로 증가함에 따라 웨이퍼 레벨에서 Au 범프의 높이 편차가 증가하였으며, 도금액 온도가 $40^{\circ}C$보다 $60^{\circ}C$일 때 웨이퍼 레벨에서 더 균일한 범프 높이의 분포도를 얻을 수 있었다.
초임계이산화탄소와 공용매의 혼합물을 사용하여 반도체 웨이퍼 기판으로부터 고농도이온주입 포토레지스트(HDIPR)를 제거하였다. 또한 고압 셀 내부에 초음파 장치를 부착하여 웨이퍼 표면에 물리적 힘을 제공함으로서 세정용액의 HDIPR에 대한 스트리핑 성능을 현저히 향상시키고, 제거 시간을 단축시켰다. 공용매의 종류 및 농도, 공정 온도, 압력 변화에 따른 HDIPR 스트리핑 특성을 조사하였으며, 웨이퍼 표면의 제거 전후의 상태 및 성분을 scanning electron microscopy 과 energy dispersive X-ray spectrometer를 이용하여 분석하였다. 10 w/w% 함량의 아세톤 공용매를 이용하여 공정압력 27.6 MPa과 온도 343 K 의 조건에서 3분의 초음파 처리시간을 거쳐 HDIPR을 완전히 제거할 수 있었다.
The turbulence effect of particle deposition on a horizontal free-standing wafer in a vertical flow has been studied numerically by using the low-Reynolds-number k-.epsilon. turbulence model. For both the upper and lower surfaces of the wafer, predictions are made of the averaged particle deposition velocity and its radial distribution. Thus, it is now possible to obtain local information about the particle deposition on a free-standing wafer. The present result indicates that the particle deposition velocity on the lower surface of wafer is comparable to that on the upper one in the diffusion controlled deposition region in which the particle sizes are smaller than $0.1{\mu}m$. And it is found in this region that, compared to the laminar flow case, the averaged deposition velocity under the turbulent flow is about two times higher, and also that the local deposition velocity at the center of wafer is high equivalent to that the wafer edge.
현재 결정질 실리콘 태양전지의 전 후면 전극의 형성은 스크린 프린팅 방법이 주를 이루고 있다. 스크린 프린팅 방법은 쉽고 빠르게 인쇄가 가능한 반면 단가가 높고 금속 페이스트에 첨가된 여러 혼합물에 의해서 전극과 기판 사이의 저항이 크다는 단점이 있다. 본 논문에서는 도금을 이용하여 태양전지의 전극을 형성한 후 태양전지의 전기적 특성을 비교하였다. 또한 단일반사방지막($SiN_x$) 증착 후 도금을 이용한 전극 형성 시 반사방지막의 pin-hole에 의해 전극 이외의 표면에 도금이 되는 ghost plating 현상이 발생하게 되는데, 이를 방지하기 위해 thermal oxidation을 이용하여 SiO2/SiNx 이중반사 방지막을 증착함으로써 ghost plating을 최소화 시켰다. Ni을 이용하여 전극과 기판 사이의 저항을 낮추었으며, 주요 전극은 Cu 도금을 사용함으로써 단가를 낮추었으며 마지막으로 Cu전극의 산화를 방지하기 위해 Ag을 이용하여 얇게 도금하였다. 실험에 사용된 Si 웨이퍼 특성은 p-형, $156{\times}156mm2$, $200{\mu}m$, $0.5{\sim}3.0{\Omega}{\cdot}cm$ 이다. 웨이퍼는 표면조직화, p-n접합 형성, 반사방지막 코팅을 하였으며 스크린 프린팅 방법을 이용해 후면 전극을 인쇄하고 열처리 과정을 통해 전극을 형성하였다. 이 후 전면에 레이저를 이용해 전극 패턴을 형성한 후 도금을 실행하여 태양전지를 완성하였다. 완성된 태양전지는 솔라 시뮬레이터, QE 및 TLM패턴을 이용하여 전기적 특성을 분석하였으며, SEM과 linescan, 광학현미경 등을 이용하여 전극을 분석하였다.
In this paper, a new method of noncontact measurement has been developed for a 3 dimensional topography in semiconductor wafer, implementing a new optical probe based on the precision defocus measurement. The developed technique consists of the new optical probe, precision stages, and the measurement/control system. The basic principle of the technique is to use the reflected slit beam from the specimen surface, and to measure the deviation of the specimen surface. The defocusing distance can be measured by the reflected slit beam, where the defocused image is measured by the proposed optical probe, giving very high resolution. The distance measuring formula has been proposed for the developed probe, using the laws of geometric optics. The precision calibration technique has been applied, giving about 10 nanometer resolution and 72 nanometer of four sigma uncertainty. In order to quantitize the micro pattern in the specimen surface, some efficient analysis algorithms have been developed to analyse the 3D topography pattern and some parameters of the surface. The developed system has been successfully applied to measure the wafer surface, demonstrating the line scanning feature and excellent 3 dimensional measurement capability.
다른 재료에 비해 에너지 변환 효율의 관점에서 높은 경쟁력을 가진 결정질 실리콘은 지난 수십 년 동안 그 특성이 태양전지 분야에 널리 이용되어 왔다. 하지만 결정질 실리콘 웨이퍼는 일반적으로 제조 단계에서 많은 양의 에너지를 소비하고 절단 단계에서 절단 손실(Kerf-loss)이 발생된다. Epoxy Resin을 이용한 Kerf-less Wafering은 초박형 실리콘 웨이퍼 제조 기술 중 하나로, 비교적 간단한 장비와 공정을 통하여 절단 손실 없이 $50{\mu}m$이하의 초박형 실리콘 웨이퍼를 얻을 수 있는 기술이다. 실리콘과 Epoxy Resin 간의 열팽창 계수 차이를 이용하여 초박형 실리콘을 박리 시키는 기술로, 실리콘 기판 위에 Epoxy Resin으로 stress inducing layer를 올려 공정을 진행한다. stress inducing layer를 경화시키는 열처리가 끝나고 급냉되는 과정에서 stress inducing layer에 의해 실리콘 기판에 큰 응력이 가해지게 되고 실리콘 기판에 crack이 발생된다. 공정이 계속 됨에 따라 발생된 crack은 실리콘 표면과 평행한 방향으로 전파 되고 초박형 실리콘 layer가 실리콘 기판에서 박리 된다. 본 실험에서 중요한 공정 변수로는 stress inducing layer의 구성성분 및 두께, 열처리 온도 및 시간, cooling rate 등이 있다. 이러한 공정 변수들을 조절 하여 Epoxy Resin을 이용하여 $100{\mu}m$ 이하의 박리된 wafer를 얻을 수 있었다. 박리된 wafer의 단면과 두께를 Scanning Electron Microscopy(SEM)을 통해 관찰 하였고, 이를 통해 초박형 실리콘 박리 공정에 대한 연구를 진행하였다.
초크랄스키 실리콘 기판의 뒷면에 형성된 기계적 손상이 미치는 효과에 대하여 고찰하였다. 기계적 손상의 정도는 레이저 여기/극초단파 반사 광전도 감쇠법에 의한 소수반송자 재결합 수명, X-선 단면 측정 및 습식 산화/선택적 식긱 방법으로 평가하였다. 그 결과, 웨이퍼 뒷면에 가해지는 기계적 손상의 세기가 강할수록 소수반송자 재결합 수명은 짧아지고, 산만 산란 정도와 X-선 과잉 강도의 적분값은 비례적으로 증가하였으며, 그 값을 Grade 1의 손상된 웨이퍼에서의 과잉 강도로 정규화하면 과잉 강도의 상대 정량비는 Geade 1:Grade 2:Grade 3 = 1:7:18.4이다.
반도체 웨이퍼의 표면을 연마하여 평탄화하는 Chemical Mechanical Planarization(CMP) 공정은 다양한 화학물질과 물리적인 기계장치에 의한 작용을 받기 때문에 공정을 안정적으로 관리하기 힘들다. CMP 공정에서 품질 지표로는 Material Removal Rate(MRR)를 많이 사용하고, CMP 공정의 안정적 관리를 위해서는 MRR을 예측하는 것이 중요하다. 본 연구에서는 머신러닝 기법들을 이용하여 CMP 공정에서 수집된 시계열 센서 데이터를 분석하여 MRR을 예측하는 모형과 공정 품질을 해석하기 위한 분류 모형을 개발한다. 나아가 분류 결과를 분석하여, CMP 공정 품질에 영향을 미치는 유의미한 변수를 파악하고 고품질을 유지하기 위한 공정 조건을 설명한다.
플라즈마에 노출된 재료 표면의 온도 증가는 다음과 같은 요인에 의해서 결정된다. 이온의 충돌에 의한 역학적 에너지, 이온의 중성화, 라디칼의 안정화에 의한 에너지 방출(잠열, latent heat), 플라즈마에서 방출된 빛의 흡수. 이중 식각을 위한 기판 바이어스에 의해서 주로 결정되는 이온 충돌 에너지와 잠열의 방출이 300 mm wafer용 유도 결합 플라즈마 식각 장치에서 소스 전력과 바이어스 전력에 따라서 어떻게 변화하는지 전산 유체 역학 모사 프로그램인 CFD-ACE를 이용하여 상용 식각 장비인 AMAT사의 DPS II를 대상으로 온도 분포의 변화를 계산하였다. 실험 결과와 비교를 위하여 다섯 곳에(상, 하, 좌, 우, 중심) 열전대를 부착한 온도 측정 웨이퍼를 기판의 위치에 설치하고 여러 가지 실험 조건에 대해서 온도의 변화를 측정하였다. Ar 10 mTorr에서 2열 병렬 안테나의 전력을 300 W에서 시간에 따른 온도의 변화를 측정하였다. 이때 wafer의 평균 온도는 $28.9^{\circ}C$에서 $150^{\circ}C$까지 12분 내에 상승하였으며 최고 온도에 도달한 다음에는 거의 일정하게 유지 되었다. Si의 식각에서 온도의 영향을 가장 크게 받는 반응은 F 라디칼에 의한 Si의 직접 식각이며 Arrhenius 식의 형태로 표현하면 0.116*exp (-1250/T)의 형태로 된다. 문헌에 보고된 계수를 이용해서 $29^{\circ}C$의 식각 속도와 플라즈마에 의한 가열 최고 온도인 $150^{\circ}C$ 때의 값을 비교해보면 3.3배의 차이가 난다. 따라서 4%내의 식각 균일도를 목표로 하는 폴리 실리콘 게이트 식각 장비의 설계에서는 플라즈마에 의한 가열 불균일을 상쇄 할 수 있는 히터와 냉각 구조의 최적 설계가 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.