• Title/Summary/Keyword: 웨이블릿 수축

Search Result 9, Processing Time 0.024 seconds

Detection of Premature Ventricular Contraction Using Discrete Wavelet Transform and Fuzzy Neural Network (이산 웨이블릿 변환과 퍼지 신경망을 이용한 조기심실수축 추출)

  • Jang, Hyoung-Jong;Lim, Joon-Shik
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.3
    • /
    • pp.451-459
    • /
    • 2009
  • This paper presents an approach to detect premature ventricular contraction(PVC) using discrete wavelet transform and fuzzy neural network. As the input of the algorithm, we use 14 coefficients of d3, d4, and d5, which are transformed by a discrete wavelet transform(DWT). This paper uses a neural network with weighted fuzzy membership functions(NEWFM) to diagnose PVC. The NEWFM discussed in this paper classifies a normal beat and a PVC beat. The size of the window of DWT is $-31/360{\sim}+32/360$ second(64 samples) whose center is the R wave. Using the seven records of the MIT-BIH arrhythmia database used in Shyu's paper, the classification performance of the proposed algorithm is 99.91%, which outperforms the 97.04% of Shyu's analysis. Using the forty records of the M1T-BIH arrhythmia database used in Inan's paper, the classification performance of the proposed algorithm is 98.01%, which outperforms 96.85% of Inan's one. The SE and SP of the proposed algorithm are 84.67% and 99.39%, which outperforms the 82.57% and 98.33%, respectively, of Inan's study.

  • PDF

Extracting Arrhythmia Classification Fuzzy Rules Using A Neural Network And Wavelet Transform (퍼지 신경망과 웨이블릿 변환을 이용한 부정맥 분류 퍼지규칙의 추출)

  • Kim Deok-Yong;Lim JoonShik
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.110-113
    • /
    • 2005
  • 본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted fuzzy Membership Funcstions, NEWFM)을 이용하여 심전도 신호로부터 조기심실수축(Premature Ventricular Contraction, PVC)을 판별하는 퍼지규칙을 추출하고 있다. NEWFM은 자기적응적(self adaptive) 가중 퍼지소속함수를 가지고 주어진 입력 데이터로부터 학습하여 퍼지규칙을 생성하고 이를 기반으로 정상 파형과 PVC 파형을 구분한다. 분류 성능 평가를 위하여 MIT/BIH 부정맥 데이터 베이스를 사용하였으며, NEWFM의 입력은 심전도의 파형에 웨이블릿 변환을 적용하여 추출된 웨이블릿 계수를 사용하였다. 여기에 비중복면적 분산 측정법을 적용하여 중요도가 낮은 계수를 제거하면서 최소의 m 개 특징입력만을 사용한 하이퍼박스로 단순화 시킨다. 이러한 방법으로 추출된 2개의 웨이블릿 계수를 사용한 퍼지규칙은 $96\%$의 PVC 분류성능을 보여준다.

  • PDF

Choice of Wavelet-Thresholds for Denoising image (잡음 제거를 위한 웨이블릿 임계값 결정)

  • Cho, Hyun-Sug;Lee, Hyoung
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.693-698
    • /
    • 2001
  • Noisy data are often fitted using a smoothing parameter, controlling the importance of two objectives that are opposite to a certain extent. One of these two is smoothness and the other is closeness to the input data. The optimal value of this parameter minimizes the error of the result. This optimum cannot be found exactly, simply because the exact data are unknown. This paper propose the threshold value for noise reduction based on wavelet-thresholding. In the proposed method PSNR results show that the threshold value performs excellently in comparison with conventional methods without knowing the noise variance and volume of signal.

  • PDF

Automatic Premature Ventricular Contraction Detection Using NEWFM (NEWFM을 이용한 자동 조기심실수축 탐지)

  • Lim Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.378-382
    • /
    • 2006
  • This paper presents an approach to detect premature ventricular contractions(PVC) using the neural network with weighted fuzzy membership functions(NEWFM). NEWFM classifies normal and PVC beats by the trained weighted fuzzy membership functions using wavelet transformed coefficients extracted from the MIT-BIH PVC database. The two most important coefficients are selected by the non-overlap area distribution measurement method to minimize the classification rules that show PVC classification rate of 99.90%. By Presenting locations of the extracted two coefficients based on the R wave location, it is shown that PVC can be detected using only information of the two portions.

Minimum Fuzzy Membership Function Extraction for Automatic Premature Ventricular Contraction Detection (자동 조기심실수축 탐지를 위한 최소 퍼지소속함수의 추출)

  • Lim, Joon-Shik
    • Journal of Internet Computing and Services
    • /
    • v.8 no.1
    • /
    • pp.125-132
    • /
    • 2007
  • This paper presents an approach to detect premature ventricular contractions(PVC) using the neural network with weighted fuzzy membership functions(NEWFM), NEWFM classifies normal and PVC beats by the trained weighted fuzzy membership functions using wavelet transformed coefficients extracted from the MIT-BIH PVC database. The eight most important coefficients of d3 and d4 are selected by the non-overlap area distribution measurement method. The selected 8 coefficients are used for 3 data sets showing reliable accuracy rates 99,80%, 99,21%, and 98.78%, respectively, which means the selected input features are less dependent to the data sets. The ECG signal segments and fuzzy membership functions of the 8 coefficients enable input features to interpret explicitly.

  • PDF

Spectral analysis of brain oscillatory activity (뇌파의 주파수축 분석법)

  • Min, Byoung-Kyong
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.2
    • /
    • pp.155-181
    • /
    • 2009
  • Psychophysiologists are often interested in the EEG signals that accompany certain psychological events. When one is interested in a time series of event-related changes in EEG, one focuses on examining how the waveforms recorded at individual electrode sites vary over time across one or more experimental conditions. This is an analysis of event-related potentials (ERPs). In addition to such a classical EEG analysis in the time domain, the EEG measures can be investigated in the frequency domain. Moreover, it has been demonstrated that spectral analyses can often yield significant insight into the functional cognitive correlations of the signals. Therefore, this review paper tries to summarize essential concepts (e.g. phase-locking) and conventional methods (e.g. wavelet transformation) for understanding spectral analyses of brain oscillatory activity. Phase-coherence is also introduced in relation to functional connectivity of the brain.

  • PDF

Improvement in the Quality of Ultrasonographic Images Using Wavelet Conversion and a Boundary Detection Filter (Wavelet 변환과 경계선 검출 필터를 이용한 초음파 영상의 화질증대)

  • Han, Dong-Kyun;Rhim, Jae-Dong;Lee, Jun-Haeng
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • The present study proposed a method that dissolves ultrasonographic images into multiple resolutions using wavelet conversion and a boundary detection filter and improves the quality of ultrasonographic images through boundary detection filtering. In order to reduce noises and strengthen edges, the proposed method adjusted selectivity coefficient by area step by step from a low resolution image obtained from wavelet converted images to a high resolution image and performed edge filtering in consideration of direction. Through this method, we generated a selective low pass filtering effect in areas except edges by decreasing the wavelet coefficient for pixels in spot areas, improved continuity by smoothing edges in the tangential direction, and enhanced contrast by thinning in the normal direction. Through an experiment, we compared the filtering method using a non linear anisotropic expansion model and the filtering method using wavelet contraction structure in single resolution.

  • PDF

An Adaptive Classification Algorithm of Premature Ventricular Beat With Optimization of Wavelet Parameterization (웨이블릿 변수화의 최적화를 통한 적응형 조기심실수축 검출 알고리즘)

  • Kim, Jin-Kwon;Kang, Dae-Hoon;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.294-305
    • /
    • 2009
  • The bio signals essentially have different characteristics in each person. And the main purpose of automatic diagnosis algorithm based on bio signals focuses on discriminating differences of abnormal state from personal differences. In this paper, we propose automatic ECG diagnosis algorithm which discriminates normal heart beats from premature ventricular contraction using optimization of wavelet parameterization to solve that problem. The proposed algorithm optimizes wavelet parameter to let energy of signal be concentrated on specific scale band. We can reduce the personal differences and consequently highlight the differences coming from arrhythmia via this process. The proposed algorithm using ELM as a classifier show high discrimination performance between normal beat and PVC. From the experimental results on MIT-BIH arrhythmia database the performances of the proposed algorithm are 98.1% in accuracy, 93.0% in sensitivity, 96.4% in positive predictivity, and 0.8% in false positive rate. This results are similar or higher then results of existing researches in spite of small human intervention.