• Title/Summary/Keyword: 웨이브렛 변황

Search Result 2, Processing Time 0.015 seconds

Analysis of 2-Dimensional Object Recognition Using discrete Wavelet Transform (이산 웨이브렛 변환을 이용한 2차원 물체 인식에 관한 연구)

  • Park, Kwang-Ho;Kim, Chang-Gu;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.194-202
    • /
    • 1999
  • A method for pattern recognition based on wavelet transform is proposed in this paper. The boundary of the object to be recognized includes shape information for object of machine parts. The contour is first represented using a one-dimensional signal and normalized about translation, rotation and scale, then is used to build the wavelet transform representation of the object. Wavelets allow us to decompose a function into multi-resolution hierarchy of localized frequency bands. The recognition of 2-dimensional object based on the wavelet is described to analyze the shape of analysis technique; the discrete wavelet transform(DWT). The feature vectors obtained using wavelet analysis is classified using a multi-layer neural network. The results show that, compared with the use of fourier descriptors, recognition using wavelet is more stable and efficient representation. And particularly the performance for objects corrupted with noise is better than that of other method.

  • PDF

Selection and Allocation of Point Data with Wavelet Transform in Reverse Engineering (역공학에서 웨이브렛 변황을 이용한 점 데이터의 선택과 할당)

  • Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.158-165
    • /
    • 2000
  • Reverse engineering is reproducing products by directly extracting geometric information from physical objects such as clay model wooden mock-up etc. The fundamental work in the reverse engineering is to acquire the geometric data for modeling the objects. This research proposes a novel method for data acquisition aiming at unmanned fast and precise measurement. This is come true by the sensor fusion with CCD camera using structured light beam and touch trigger sensor. The vision system provides global information of the objects data. In this case the number of data and position allocation for touch sensor is critical in terms of the productivity since the number of vision data is very huge. So we applied wavelet transform to reduce the number of data and to allocate the position of the touch probe. The simulated and experimental results show this method is good enough for data reduction.

  • PDF