• Title/Summary/Keyword: 웨이브렛변환

Search Result 390, Processing Time 0.022 seconds

Dispersive Wave Analysis of a Beam under Impact Load by Piezo-Electric Film Sensor and Wavelet Transform (충격하중을 받는 보에서 압전 필름센서와 웨이브렛 변환을 이용한 문산파동의 해석)

  • Kwon., Il-Bum;Choi, Man-Yong;Jeong., Hyun-Jo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.215-225
    • /
    • 2001
  • Stress waves monitored on the surface of structures under various loading conditions can provide useful information on the structural health status. In this paper, stress waves are measured by several sensors when a steel beam is impacted by a ball drop. The sensors used include the piezo-electric film Sensor, the electrical strain gage, and the ultrasonic transducer, and special attention is given to the pieza film sensor. The wavelet transform is used for the time-frequency analysis of dispersive waves propagating in the beam. The velocities of the wave produced in the team due to the lateral impact is found to be frequency-dependent and identified as the flexural wave velocity based on the comparisons with the Timoshenko beam theory. A linear impact site identification method is developed using the flexural wave, and the impact sites of the beam can be accurately estimated by the piezo film sensors. It is found that the piezo film sensor is appropriate for sensing stress waves due to impact and for locating impact sites in the beam.

  • PDF

Image Cryptographic Algorithm Based on the Property of Wavelet Packet Transform (웨이브렛 패킷 변환의 특성을 이용한 영상 암호화 알고리즘)

  • Shin, Jonghong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.2
    • /
    • pp.49-59
    • /
    • 2018
  • Encryption of digital images has been requested various fields. In the meantime, many algorithms based on a text - based encryption algorithm have been proposed. In this paper, we propose a method of encryption in wavelet transform domain to utilize the characteristics of digital image. In particular, wavelet transform is used to reduce the association between the encrypted image and the original image. Wavelet packet transformations can be decomposed into more subband images than wavelet transform, and various position permutation, numerical transformation, and visual transformation are performed on the coefficients of this subband image. As a result, this paper proposes a method that satisfies the characteristics of high encryption strength than the conventional wavelet transform and reversibility. This method also satisfies the lossless symmetric key encryption and decryption algorithm. The performance of the proposed method is confirmed by visual and quantitative. Experimental results show that the visually encrypted image is seen as a completely different signal from the original image. We also confirmed that the proposed method shows lower values of cross correlation than conventional wavelet transform. And PSNR has a sufficiently high value in terms of decoding performance of the proposed method. In this paper, we also proposed that the degree of correlation of the encrypted image can be controlled by adjusting the number of wavelet transform steps according to the characteristics of the image.

The Digital Image Processing Method Using Triple-Density Discrete Wavelet Transformation (3중 밀도 이산 웨이브렛 변환을 이용한 디지털 영상처리 기법)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.3
    • /
    • pp.133-145
    • /
    • 2012
  • This paper describes the high density discrete wavelet transformation which is one that expands an N point signal to M transform coefficients with M > N. The double-density discrete wavelet transform is one of the high density discrete wavelet transformation. This transformation employs one scaling function and two distinct wavelets, which are designed to be offset from one another by one half. And it is nearly shift-invariant. Similarly, triple-density discrete wavelet transformation is a new set of dyadic wavelet transformation with two generators. The construction provides a higher sampling in both time and frequency. Specifically, the spectrum of the first wavelet is concentrated halfway between the spectrum of the second wavelet and the spectrum of its dilated version. In addition, the second wavelet is translated by half-integers rather than whole-integers in the frame construction. This arrangement leads to high density wavelet transformation. But this new transform is approximately shift-invariant and has intermediate scales. In two dimensions, this transform outperforms the standard and double-density discrete wavelet transformation in terms of multiple directions. Resultingly, the proposed wavelet transformation services good performance in image and video processing fields.

Analysis of the Unconstraind BCG Parameter for Stress Discrimination (스트레스 판별을 위한 무구속 심탄도의 파라미터 분석)

  • Jeon, Gam-Pyo;Noh, Yun-Hong;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.148-151
    • /
    • 2010
  • 심장관련 질환은 현대사회에서 업무 과중과 스트레스에 의해 발병 가능성이 높아지고 있으며, 일상생활 중 건강상태를 지속적으로 모니터링하여 심장질환 관련 응급상황에 대처하기위한 많은 연구들이 수행되고 있다. 본 연구에서는 가정 또는 사무실에서 무구속적인 방법으로 지속적인 심장 활동상태의 모니터링이 가능한 무구속 의자형 심탄도 계측 시스템을 구현하였다. 구현된 시스템에서 계측된 심탄도 신호로부터 건강모니터링을 위한 특징성분을 검출하기위해 웨이브렛 변환과 템플릿 매칭을 혼합한 신호처리방법을 제안하였다. 또한 적응 문턱치를 통해 심탄도 신호에서 심박동을 검출하였으며 심박동의 간격으로부터 HRV(heart rate variabillity)를 계산하였다. 구현된 시스템의 성능평가를 위하여 심전도와 동시에 심탄도를 측정하였으며, 두 신호로부터 심박동 검출 성능을 비교하여 구현된 무구속 의자형 심탄도 계측 시스템의 유용성 및 무자각 건강모니터링의 가능성을 확인하였다. 또한 스트레스에 따른 HRV의 변화를 관찰하기 위하여 피실험자로부터 인위적으로 숨을 참고 강제호기를 통해 흉강내압을 증가시켜 인위적인 육체적 스트레스를 가하는 발살바를 유도하였으며, HRV의 시간 및 주파수 영역에서 도출되는 파라미터들을 평가하여 심탄도 모니터링을 통해 안정 상태와 스트레스 상태의 판별 및 무구속 건강모니터링의 가능성을 평가하였다.

  • PDF

A Study on the Recognition of Human Pulse Using Wavelet Transform (웨이브렛 변환을 이용한 맥파의 인식에 관한 연구)

  • 길세기;김낙환;박승환;민홍기;흥승홍
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.269-272
    • /
    • 2000
  • It is need to develop and apply a human pulse diagnosis system providing a quantitative and automatic analysis in the the oriental medicine. In order to analyze quantitatively the characteristic of pulsation, each of points had to be recognized accurately notifying the existence and the position of feature point in the wave form. And getting the period of human pulse. Thus, in this paper, it is proposed the preprocessing method of human pulse and the detection method of period by Wavelet Transformation. The human pulse is seprated from each band through Wavelet Transformation and feature points can be recognized through over the fact, and then the parameter of proposed Mac-Jin parameter is measured. Commonly, Human pulse signal has often various noises which are baseline drift, high frequency noise and so on. So it is significant to remove that noises. Thus, in this paper, the one period of human pulse is deciede and the feature points are detected after doing the preprocessing by wavelet transformation. As a result, it could be confirmed that this method is effective as a real program for the auto-diagnosis of human pulse.

  • PDF

Development of diagnosis index for tick/click and tone noise of blower motor using vibration signals (진동 신호를 이용한 블로워 모터 틱/클릭과 톤 소음의 진단 지수 개발)

  • Lee, Songjune;Cheong, Cheolung;Lee, In-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.363-369
    • /
    • 2019
  • Various studies have been conducted for the diagnosis of noise condition of complex rotary machines. In this study, diagnosis index using vibration signal is developed for the efficient and objective assessment of noise condition of a blower motor. The noise most commonly caused by the abnormal blower motor are Tick/Click noise and Tone noise. According to cause and noise characteristics, time-frequency analysis is used to diagnose Tick/Click noise, and smoothing in frequency domain is used to diagnose tone noise condition. The noise condition of the blower motors were diagnosed using the developed index and these results are compared with the diagnostic results by the experts. As a result, the agreement rate was about 95 %.

Integrity evaluation of grouting in umbrella arch methods by using guided ultrasonic waves (유도초음파를 이용한 강관보강다단 그라우팅의 건전도 평가)

  • Hong, Young-Ho;Yu, Jung-Doung;Byun, Yong-Hoon;Jang, Hyun-Ick;You, Byung-Chul;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.187-199
    • /
    • 2013
  • Umbrella arch method (UAM) used for improving the stability of the tunnel ground condition has been widely applied in the tunnel construction projects due to the advantage of obtaining both reinforcement and waterproof. The purpose of this study is to develop the evaluation technique of the integrity of bore-hole in UAM by using a non-destructive test and to evaluate the possibility of being applied to the field. In order to investigate the variations of frequency depending on grouted length, the specimens with different grouted ratios are made in the two constraint conditions (free boundary condition and embedded condition). The hammer impact reflection method in which excitation and reception occur simultaneously at the head of pipe was used. The guided waves generated by hitting a pipe with a hammer were reflected at the tip and returned to the head, and the signals were received by an acoustic emission (AE) sensor installed at the head. For the laboratory experiments, the specimens were prepared with different grouted ratios (25 %, 50 %, 75 %, 100 %). In addition, field tests were performed for the application of the evaluation technique. Fast Fourier transform and wavelet transform were applied to analyze the measured waves. The experimental studies show that grouted ratio has little effects on the velocities of guided waves. Main frequencies of reflected waves tend to decrease with an increase in the grouted length in the time-frequency domain. This study suggests that the non-destructive tests using guided ultrasonic waves be effective to evaluate the bore-hole integrity of the UAM in the field.

A Study on Development of Remote Crane Wire Rope Flaws Detection Systems (원격 크레인 와이어 로프 결함 탐지 시스템 개발에 관한 연구)

  • Min, Jeong-Tak;Lee, Jin-Woo;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.97-102
    • /
    • 2003
  • Wire ropes are used in a myriad of various industrial applications such as elevator, mine hoist, construction machinery, lift, and suspension bridge. Especially, the wire rope of crane is important component to container transfer. If it happens wire rope failures during the operation, it may lead to safety accident, economic loss by productivity decline and so on. To solve this problem, we developed remote wire rope fault detecting system, and this system is consisted of 3 parts that portable fault detecting part, signal processing part and remote monitoring part. All detected signal has external noise or disturbance according to circumstances. So, we applied to discrete wavelet transform to extract a signal from noisy data. It is verified that the detecting system by de-noising has good efficiency for inspecting faults of wire ropes in service. As a result, by developing this system, container terminal could reduce expense because of extension fo wire ropes exchange period and could competitive power. Also, this system is possible to apply in several field such as elevator, lift and so on.

Rock Bolt Integrity Assessment in Time-Frequency Domain : In-situ Application at Hard Rock Site (유도파를 이용한 시간-주파수 영역 해석을 통한 록볼트 건전도 실험의 경암지반 현장 적용성 평가)

  • Lee, In-Mo;Han, Shin-In;Min, Bok-Ki;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.5-12
    • /
    • 2009
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these structures. The purpose of this study is the evaluation of rock bolt integrity using wavelet transforms of the guided ultrasonic waves by using transmission test in the field. After several rock bolts with various defect ratios are embedded into a large scale concrete block and rock mass, guided waves are generated by a piezo disk element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the time-frequency domain using the wavelet transform based on a Gabor wavelet. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with an increase in the defect ratio. The suitable curing time for the evergy velocity analysis is proposed by the laboratory test, and in-situ tests are performed in two tunnelling sites to verify the applicability of rock bolt integrity tests performed after proposed curing time. This study proves that time-frequency domain analysis is an effective tool for the evaluation of the rock bolt integrity.

Power Quality Disturbance Detection in Distribution Systems Using Wavelet Transform (웨이브렛 변환을 이용한 배전계통의 전력품질 외란 검출에 관한 연구)

  • Son Yeong-Rak;Lee Hwa-Seok;Mun Kyeong-Jun;Park June Ho;Yoon Jae-Young;Kim Jong-Yul;Kim Seul-Ki
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.7
    • /
    • pp.328-336
    • /
    • 2005
  • Power quality has become concern both utilities and their customers with wide spread use of electronic and power electronic equipment. The poor quality of electric power causes malfunctions, instabilities and shorter lifetime of the load. In power system operation, power system disturbances such as faults, overvoltage, capacitor switching transients, harmonic distortion and impulses affects power quality. For diagnosing power quality problem, the causes of the disturbances should be understood before appropriate actions can be taken. In this paper we present a new approach to detect, localize, and investigate the feasibility of classifying various types of power quality disturbances. This paper deals with the use of a multi-resolution analysis by a discrete wavelet transform to detect power system disturbances such as interruption, sag, swell, transients, etc. We also proposed do-noising and threshold technique to detect power system disturbances in a noisy environment. To find the better mother wavelet for detecting disturbances, we compared the performance of the disturbance detection with the several mother wavelets such as Daubechies, Symlets, Coiflets and Biorthogonals wavelets. In our analysis, we adopt db4 wavelet as mother wavelet because it shows better results for detecting several disturbances than other mother wavelets. To show the effectiveness of the proposed method, a various case studies are simulated for the example system which is constructed by using PSCAD/EMTDC. From the simulation results. proposed method detects time Points of the start and end time of the disturbances.