• Title/Summary/Keyword: 원형 철근콘크리트 교각

Search Result 55, Processing Time 0.032 seconds

Anti-Seismic Performance Evaluation of Circular Pier By Interval Reinforcement (보강간격에 따른 원형 기둥부재의 내진 성능 평가)

  • Jang, Il-Young;Kim, Seong-Kyum;Park, Jun-Young;Yang, Jae-Yeol
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.165-165
    • /
    • 2011
  • 내진 설계규정이 적용되기 이전에 시공되어 사용 중인 교량의 경우 지진 발생시 교각의 파괴 또는 구조적 피해는 교량 전체 시스템의 붕괴를 초래하므로 지진하중에 대하여 피해를 최소화해야 한다. 이를 위해 내진설계규정이 적용되기 이전의 교량 또는 지진취약지역으로 분류된 곳의 교량, 사회적 중요도가 높은 교량에 대해 교각의 내진성능보강을 실시하고 있다. 2007년 말 국토해양부가 관리하고 있는 11,940개 교량 중 지진 발생시 피해가 우려되는 1,342개(일반국도 682개, 고속국도 600개) 교량에 대해 2006년부터 내진보강이 착수되었고 2009년에는 확대 추진하여 일반국도 80개교, 고속국도 100개교에 대한 보강을 실시하였다. 이와 같이 확대 추진되고 있는 정책에 반해, 내진보강 기술 및 제품이 부족하고 새로운 내진보강재 개발이 불가피해지고 있는 것이 현실이다. 소성영역에서의 횡방향 철근은 지진 시 종방향 철근의 좌굴과 콘크리트의 압축강도저하를 방지하며, 전단보강철근으로도 중요한 역할을 하여 교각의 전단강도를 증가시킨다. 그러나 이러한 횡방향 철근은 초기 설계에 의한 시공이 종료된 후 기존의 성능을 증가시키기 위하여 철근량을 증가하거나 단면의 변화를 주기에는 매우 어려운 일이다. 따라서 내진성능을 위한 단면력 증가를 위하여 다양한 재료의 보강재와 형식이 사용되고 있다. 본 연구에서는 원형교각 모델의 구조해석을 이용해 내진성능평가를 선행한 후 실험체를 제작, Helical Bar를 보강하여 준정적 실험을 통해 내진보강성능을 평가하였다. 압축설계강도 $f_{ck}=240kgf/cm^2$를 기준으로 교량등급 2등교인 일반적인 도로교의 1/4축소모형을 설계, 기초부는 $1,200{\times}600{\times}600$ (mm)으로 철근과 콘크리트로 구성하였으며, 기둥부는 직경 400mm, 높이 1,250mm 크기의 철근콘크리트 원형 교각 실험체를 제작하였다. 제작된 실험체는 총 3개로, 분류는 무보강 일반 실험체, Helical Bar 직경에 따른 분류, 보강간격에 따른 분류로 나누어진다.

  • PDF

Quasi-Static Tests for Seismic Performance of Circular RC Bridge Piers (단일주 원형 철근콘크리트 교각의 내진거동에 관한 준정적 실험)

  • 정영수;이강균;한기훈;박종협
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.55-66
    • /
    • 1999
  • Eight RC bridge plers have been made on a 1/3.4 scale model and have been tested in a quasi-static cyclic load so as to investigate their seismic performance. The ultimate objective of this experimental study is to investigate the hysteretic behavior of reinforced concrete plers, which have been widely used for urban transportation facilities in Korea. Improtant test parameters are hoop ratio, axial load, load pattern, and etc. And noninear behaviors of test columns have been evaluated through their yield and ultimate strength, energy dissipation, ductility and load-deflection characteristics under quasi-static cyclic loads. From the quasi-static tests on 8 bridge piers, it is concluded that energy dissipation, ultimate strength and curvature for a given displacement factor ${\mu}={\Delta}/{\Delta}_y$ are higher for the seismically designed columns than for the nonseismically designed columns.

  • PDF

Nonlinear Analysis of RC Bridge Columns for Ductility Evaluation (철근콘크리트 교각의 연성도 평가를 위한 비선형해석)

  • 손혁수;이재훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.39-49
    • /
    • 2003
  • This research is a part of a research program to develope a new design method for reinforced concrete bridge columns under axial load and cyclic lateral load. A nonlinear analytical method is proposed to obtain moment-curvature relationship and lateral load-displacement relationship. Various analytical models that contribute seismic behavior of reinforced concrete bridge columns are adopted and modified by comparing quasi-static test results of reinforced concrete columns with spirals of circular hoops. The analysis adopts confined concrete model, longitudinal reinforcement test result of reinforced concrete columns with spirals or circular hoops. The analysis adopts confined concrete model, etc. The results obtained using the propose analytical method agree well with test results and give conservative estimations particularly for deformation capacity and ductility.

Seismic Performance Evaluation of SRC Column by Quasi-Static Test (준정적 실험에 의한 SRC 합성교각의 내진성능 평가)

  • Han, Jung-Hoon;Park, Chang-Kyu;Shim, Chang-Su;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.85-94
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is the most important factor. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcements such as hoop ties closely. Using core steel composite columns is useful as one of the reinforcing RC columns. In this paper, quasi-static tests on concrete encased composite columns with single core steel or multiple steel elements were performed to investigate the seismic performance of the composite columns. Eight concrete-encased composite specimens were fabricated. The cross-sections of these specimens are composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcements, type and number of encased steel member. Through the tests, it was evaluated the ductility of SRC composite specimens. It has become clear from the test results that encased steel elements makes the deformation capacity of the columns to be larger. The displacement ductility and lateral strength of specimen with concrete-encased circular tube were indicated the biggest value.

A Seismatic Performance Analysis of Circular RC Bridge Piers I. Evaluation of Influence Parameters of Confinement Steel Ratio (원형 철근콘크리트 교각의 내진성능 I. 심부구속철근비 영향 변수 평가)

  • Lee Dae-Hyoung;Park Chang-Kyu;Kim Hyun-Jun;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.603-611
    • /
    • 2005
  • For the establishment of rational seismic design code for RC (reinforced concrete) bridge pier, this paper has analyzed the seismic code of RC bridge pier specified in )veil-known codes such as KHBDS (Korea Highway Bridge Design Specification), AASHTO Standard, ATC-32, Eurocode 8, NZS 3101, etc. So as to secure aseismic ductility of RC pier, transverse confinement steel ratios of those codes have been examined together with other design parameters such as strength of concrete and reinforcing steel, axial force ratio, aspect ratio, longitudinal steel ratio, etc. However, there has been arisen a doubt for the validity of those parameters. Thus, the objective of this study is to quantitatively evaluate the validity of design parameter of each code on the experimental seismic ductility for about 80 test specimens. It was concluded from this study that the axial force ratio is a dominant factor for the seismic displacement ductility. Therefore, it Is desirable that the axial force ratio be further taken into account in the corresponding seismic design formula of RC bridge pier in current KHBDS.

A Theoretical Study on the FRP Retrofit of Existing Circular Bridge Piers for Seismic Performance Enhancement (기존 원형교각의 내진성능 향상을 위한 FRP 보강에 대한 이론적 연구)

  • Kwon Tae-Gyu;Choi Young-Min;Hwang Yoon-Knok;Yoon Soon-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.61-69
    • /
    • 2004
  • The bridge piers under service suffered a brittle failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or ductility. The earthquake induced lateral force results in tension which causes bond-slip failure at the lap-spliced region in circular bridge piers. In this case, such a brittle failure can be controlled by the seismic retrofit using FRP laminated circular tube. The retrofitted piers using FRP laminated circular tube showed significant improvement in seismic performance due to FRP's confinement effect. This paper presents the analytical results on the seismic strengthening effect of circular bridge piers with poor lap-splice details and strengthened with FRP laminated circular tube. FRP's confinement effect is predicted by the classical elasticity solution for the laminated circular tube manufactured with several layers. The FRP laminated circular tube induces the flexural failure instead of a bond-slip failure of the circular reinforced concrete piers under seismic induced lateral forces. To investigate the correctness and effectiveness of analytical solution derived in this study, the analytical results were compared with the experimental data and it was confirmed that the results were correlated well each other, The effects on the confinement of FRP laminated circular tube, such as the number of layers, the fiber orientations, and the mechanical properties, were investigated. From the parametric study, it was found that the number of layers, the fiber orientations, and the major Young's modulus (E11) of the FRP laminated circular tube were the dominant parameters affecting the confinement of reinforced concrete circular bridge piers.

Failure Behavior of Hollow Circular RC Column According to the Spacing of Spirals (나선철근 간격에 따른 중공 원형 RC 기둥의 파괴거동)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.46-55
    • /
    • 2016
  • Three small scale hollow circular reinforced concrete columns(4.5 aspect ratio) were tested under cyclic lateral load with constant axial load. Diameter of section is 400 mm, hollow diameter is 200 mm. The selected test variable are transverse steel ratio. Volumetric ratio of spirals of all the columns is 0.302~0.604% in the plastic hinge region. It corresponds to 45.9~91.8% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The final objectives of this study are to provide quantitative reference data and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, steel fracture, etc. In this paper, describes mainly failure behavior, strength degradation behaviour, displacement ductility of circular reinforced concrete bridge columns with respect to test variables.

Strength Degradation and Failure of Circular RC Bridge Columns with Longitudinal Steel Connection under Cyclic Lateral Load (반복횡하중을 받는 철근콘크리트 원형 교각의 축방향철근 연결상세에 따른 강도저감 및 파괴거동)

  • Lee Jae-Hoon;Jung Chul-Ho;Ko Seong-Hyun;Son Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.111-124
    • /
    • 2004
  • This research is a part of a research program to verify the seismic performance of circular reinforced concrete bridge columns with respect to longitudinal steel connection details under cyclic lateral load. A total of 21 column specimens were constructed and tested. Main variables in this test program were longitudinal steel connection details(continuous, lap-spliced, and mechanically connected), confinement steel ratio, and axial force ratio, etc. The test results of the columns with different longitudinal steel connection details showed different failure mode, strength degradation, and seismic performance. From the quasi-static test, it was found that the columns with all longitudinal reinforcement lap-spliced showed significantly reduced ductility. However, seismic performance of the columns with half of longitudinal reinforcement lap-spliced showed limited ductility but much more ductile behaviour than the columns with all longitudinal reinforcement lap-spliced. It was also found that the seismic performance, failure mode and strength degradation of columns with mechanical connected longitudinal reinforcement were similar to those of columns with continuous longitudinal reinforcement.

Limited-Ductile Seismic Design and Performance Assessment Method of RC Bridge Piers Based on Displacement Ductility (변위연성도 기반 철근콘크리트 교각의 한정연성 내진 설계법과 성능평가 방법)

  • Park, Chang-Kyu;Chung, Young-Soo;Lee, Dae-Hyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2007
  • Until recently Korea is considered to be immune from the earthquake hazard because it is located for away from the active fault. However, we have noticed that recent strong earthquakes inflicted enormous losses on human lives and nation's economy all over the world. Hence, there has been raised the importance of the earthquake resistant design for various infrastructures. In this research, new methodologies for the seismic design and performance assessment of reinforced concrete(RC) bridge pier were proposed from experimental results of 82 circular RC bridge piers and 54 rectangular RC bridge piers tested in domestic and aboard. New seismic design method was based on the concept of the limited ductile design, which could be practically used for low or moderate seismic regions like Korea. Further study for the seismic safety of RC bridge piers was carried out to enhance the seismic performance of aged RC bridge piers, which were designed and constructed before implementing the 1992 seismic design provision in Korea. New formula for the seismic performance assessment of RC bridge piers was proposed and practically used for the decision on the need of repair and retrofit of many aged RC bridge piers.

Seismic Performance Assessment of RC Circular Column-Bent Piers Subjected to Bidirectional Quasi-Static Test (이축방향 유사정적 실험에 의한 이주형 철근콘크리트 원형 교각의 내진 성능평가)

  • Chung Young Soo;Park Chang Kyu;Lee Beom Gi;Song Hee Won
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.121-128
    • /
    • 2005
  • A RC column-bent pier represents one of the most popular piers used in highway bridges. Seismic performance of reinforced concrete (RC) column-bent piers under bidirectional seismic loadings was experimentally investigated. Six column bent-piers were constructed with two circular supporting columns which were made in 400 mm diameter and 2,000 mm height. One single column specimen was additionally made to comparatively evaluate the seismic response of RC column-bent piers. Test parameters are different transverse reinforcement and loading pattern. These piers were tested under lateral load reversals with the axial load of $0.1 f_{ck}A_g$. Three specimens were subjected to bidirectional lateral load cycles which consisted of two main longitudinal loads and two sub transverse loads in one load cycle. Other three specimens were loaded in the opposite way. Test results indicated that lateral strength and ductility of the latter three specimens were generally bigger than those of the former three specimens. Plastic hinges were formed with the spall of cover concrete and the fracture of the longitudinal reinforcing steels in the bottom plastic hinge of two supporting columns for the former three specimens. Similar behavior was observed in the top and bottom parts of two supporting columns for the latter three specimens.