• Title/Summary/Keyword: 원형케이싱

Search Result 5, Processing Time 0.02 seconds

Influence of Circualr Casing on the Performance of Very Low Specific Speed Centrifugal Pump (원형케이싱이 극저비속도 원심펌프의 성능에 미치는 영향)

  • Choi, Young-Do;Kagawa, Shusaku;Kurokawa, Junichi
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.1 s.34
    • /
    • pp.32-39
    • /
    • 2006
  • Recently, according to the trend of small size in scale and high speed in rotation of turbomachinery, very low specific speed centrifugal pump is taking a growing interest because the pump is characterized by high head and low flow rate with convenience of manufacturing and maintenance compared with conventional positive displacement pump. However, the efficiency of the very low specific speed centrifugal pump drops rapidly with the decrease of specific speed. The purpose of this study is nor only to examine the influence of casing type on the performance of centrifugal pump in the range of very low specific speed but also to determine the proper casing type for the improvement of pump performance. The results show that circular casing is suitable for the centrifugal pump in the range of very low specific speed and the influence of impeller configuration on the pump performance is very small. Radial thrust in the circular and volute casings is considerably small in the range of very low specific speed.

Advanced C.I.P Method to Use the Steel-Casing with Inner Joint (조인트 부착 강관 케이싱을 이용한 개량형 C.I.P 공법)

  • Jang, Seoyong;Choi, Jaesoon;Song, Byungwoong;Choi, Yoonyoung;Yoon, Joongsan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.95-102
    • /
    • 2012
  • In this study, practical verifications for an advanced C.I.P(Cast in Place Pile) construction method were carried out. The structural characteristics of the method is to attach an angular joint in the steel-casing. This joint plays an important role in boring vertically, connected pile to pile, and protects the permeation of the ground water. For verifications, experimental research and numerical analysis were performed. In the experimental research, two model-tests were set up with the real scale steel-casing. One is to examine the leakage in the joint of piles and the other is to compare earth pressures in the front and the joint, respectively. In addition, 3 point bending test and compressive loading test were carried out and numerical analysis was performed to simulate the loading test. As a result of model-tests, the leakage in the pile joints was not shown up to 300 KPa of water pressure and stress concentration in the joint is out of the question. From the results of bending and compressive test, it was found that the new advanced C.I.P method is more convenient and superior than the conventional method.

Interaction of Impeller and Volute in a Small-size Turbo-Compressor (소형터보압축기 회전차와 볼류트의 상호작용)

  • Kim, D.W.;Ahn, B.J.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.807-812
    • /
    • 2001
  • The effects of casing shapes on the interaction of the impeller and volute in a small-size turbo-compressor are investigated. Numerical analysis is conducted for the compressor with circular and single volute casings from inlet to discharge nozzle. In order to predict the flow pattern inside the entire impeller, vaneless diffuser, and casing, calculations with a multiple frame of reference method between the rotating and stationery parts of the domain are carried out. For incompressible turbulent flow fields, the continuity and three-dimensional time-averaged Navier-Stokes equations are employed. To predict the performance of two types of casings, the static pressure and loss coefficients are obtained with various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load.

  • PDF

Influence of Large Change of Specific Speed on the Performance of Very Low Specific Speed Centrifugal Pump (비속도의 큰 변화가 극저비속도 원심펌프의 성능에 미치는 영향)

  • Choi, Young-Do;Kagawa, Shusaku;Kurokawa, Junichi
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.1 s.34
    • /
    • pp.40-46
    • /
    • 2006
  • Efficiency of a centrifugal pump is known to drop rapidly with a decrease of specific speed $n_s$. However, below $n_s=60\;[min^{-1},\;m^3/min,\;m]$, the pump characteristics are not yet clear. Therefore, present study is aimed to investigate the influence of large change of specific speed on the performance of a very low specific speed centrifugal pump. Moreover, influence of impeller configuration on the performance of very low specific speed pump is investigated. The results show that very low specific speed can be accomplished by reducing volute throat sectional area using circular spacer. Influence of the spacer's location and configuration in the discharge passage on the pump performance is very small. Best efficiency of very low specific speed centrifugal pump decreases proportionally to the specific speed but the best efficiency decreases on a large scale in the range of $n_s<40$. Influence of impeller configuration on the pump performance and radial thrust of centrifugal pump are considerably small in the range of extremely low specific speed $(n_s=25)$.

Plate Type New Distributor Development for Hydraulic Motors and Pumps (유압모터 및 펌프용 판 형태의 새로운 분배기 개발)

  • Jin, Seong-Mu;Kim, Hyeong-Ui
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.75-85
    • /
    • 1988
  • The distributor for hydraulic pumps or motors, particularly radial piston motors, include rotary member which has equally both surface shape for dynamic balance and two fixed members, located in both side of rotary member, which have equal surface shape for dynamic balance and circular ring which use to retain predetermined clearance between two fixed members. Rotary member must have valve part for flow-distribution and can have hydrostatic bearing for excellently dynamic balance. At least two annular steps located on said pressure plate which use in compensation of bolt expansion.

  • PDF