• Title/Summary/Keyword: 원형충돌제트

Search Result 39, Processing Time 0.023 seconds

The Effect of Nozzle Diameter on Heat Transfer to a Fully Developed Round Impinging Jet (완전 발달된 원형 충돌제트의 노즐 직경이 열전달에 미치는 영향)

  • Lee, Dae-Hee;Won, Se-Youl;Lee, Young-Min;Cho, Heon-No
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.519-525
    • /
    • 2000
  • The effect of nozzle diameter on the local Nusselt number distributions has been investigated for an axisymmetric turbulent jet impinging on the flat plate surface. The flow at the nozzle exit has a fully developed velocity profile. A uniform heat flux boundary condition at the plate surface was created using gold film Intrex. Liquid Crystal was used to measure the plate surface temperature. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle to surface distance (L/d) from 2 to 14, and the nozzle diameter (d) from 1.36 to 3.40 cm. The results show that the Nusselt number at and near the stagnation point increase with an increasing value of the nozzle diameter.

Prediction of Jet Impingement Heat Transfer on a Cylindrical Pedestal (원형블록이 있는 벽면충돌제트 열전달 해석)

  • Park, Tae-Seon;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.141-149
    • /
    • 2002
  • A numerical simulation is performed for the cooling heat transfer of a heated cylindrical pedestal by an axisymmetric jet impingement. Based on the k- $\varepsilon$- f$\sub$${\mu}$/ model of Park et at., the linear and nonlinear stress-strain relations are extended. The Reynolds number based on the jet diameter(D) is fixed at Re$\sub$D/ = 23000. The local heat transfer coefficients are compared with available experimental data. The predictions by k- $\varepsilon$-f$\sub$${\mu}$/ model are in good agreement with the experiments, whereas the standard 7- f model does not properly resolve the flow structures.

Temperature field measurement and CFD analysis of a jet impinging on a concave surface depending on changes in nozzle to surface distance and the diameter of a circular nozzle (원형 노즐의 직경 변화 및 표면으로 부터의 거리변화에 따른 오목한 표면에 충돌하는 제트의 온도장 측정 및 CFD해석)

  • Yeongmin Jo;Yujin Im;Eunseop Yeom
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.55-62
    • /
    • 2023
  • The characteristic of jet impinging on the concave surface were analyzed through thermographic phosphor thermometry (TPT) and numerical investigation. Under a jet Reynolds number of 6600, nozzle diameters and nozzle-to-surface distances (H/d) were changed 5mm and 10mm and H/d=2 and 5. The RNG k-ε turbulence model can accurately predict the distribution of Nusselt number, compared to other models (SST k-ω, realizable k-ε). Heat transfer characteristics varied with the nozzle diameter and H/d, with a secondary peak noted at H/d =2, due to vortex-induced flow detachment and reattachment. An increase in nozzle diameter enhanced jet momentum, turbulence strength, and heat transfer.

Heat Transfer Enhancement by the Perforated Plate of Round Impinging Air Jets (원형충돌제트에서 다공질판에 의한 열전달 향상)

  • Kim, Yun-Taek;Lee, Yeong-Min;Won, Se-Yeol;Lee, Dae-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.475-484
    • /
    • 2001
  • The purpose of this study is to investigate the heat transfer augmentation using the perforated plate placed in front of a target plate in an axisymmetric impinging air jet system. The new liquid crystal technique using neural networks with median filtering is used to determine the Nusselt number distributions on the target surface. The experiments were made for the jet Reynolds number (Re) 23,000. The effects of the pitch-to-diameter (p/d1) from 1.5 to 2.5 in the perforated plate, the hole diameter on perforated plate (d1) from 4㎜ to 12㎜, the perforated plate to target surface distance (z/d1) from 1 to 3, and the nozzle-to-target surface distance (L/d) from 2 to 10 on the heat transfer characteristics were experimentally investigated. It was found that when the perforated plate was located between the nozzle exit and the target plate, the average heat transfer rate at the stagnation region corresponding to r/d$\leq$1.0 was increased up to the maximum 2.3 times compared to the case without the perforated plate.

Characteristics of Turbulent Impinging and Wall Jet Flow for a Circular Nozzle with Various Exit Wall Thickness (다양한 벽면 두께를 갖는 원형 노즐에서 분사되는 난류 충돌 및 벽면 제트 유동장 특성)

  • Yang, Geun-Yeong;Yun, Sang-Heon;Son, Dong-Gi;Choe, Man-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.751-757
    • /
    • 2001
  • An experimental study of impinging jet-flow structure has been carried out for a fully developed single circular jet impingement cooling on a flat plate, and the effect of the wall thickness at nozzle exit edge is investigated. Impinging jet flow structures have been measured by Laser-Doppler Velocimeter to interpret the heat transfer results presented previously by Yoon et al.(sup)(10) The peaks of heat transfer rate are observed near the nozzle edge owing to the radial acceleration of jet flow when the nozzle locates close to the impingement plate. The growth of the velocity fluctuations in the wall jet flow is induced by the vortices which originate in the jet shear layer, and consequently the radial distribution of local Nusselt numbers has a secondary peak at the certain radial position. As a wall of circular pipe nozzle becomes thicker for small nozzle-to-target distance, the entrainment can be inhibited, consequently, the acceleration of wall jet flow is reduced and the heat transfer rate decreases.

The Study on the Phenomenon of Heat Transfer on a Downward Isothermal Circular Surface by an Impinging of Upward Circular Nozzle Jet (상향 원형노즐 제트에 의한 하향 등온 원형평면에서의 열전달 현상에 관한 연구)

  • Lee, In Jae;Eom, Yong Kyoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.450-457
    • /
    • 2016
  • While many studies on the heat transfer effect of an impinging jet have been published, most studies focus on the downward impinging jet. This study investigates the impinging jet heat transfer phenomenon when water at a temperature of $24^{\circ}C$ impinges on the downward isothermal circular plate at 60, 70, and $80^{\circ}C$ and when the upward round jet nozzle is 4, 6, and 8 mm diameter with a flow rate 3.6, 4.6, and 5.6 L/min, respectively, and when the ratio of the nozzle clearance/nozzle diameter (H/D) is 1. The results showed that, as the nozzle diameter decreases, the heat transfer coefficient increases at a constant flow rate. The correlation equation of $Nu_r$, $Pr_r$, and $Re_{jg}$ is obtained in the impinging and constant velocity flow region $(Nu_r/Pr^{0.4}_r)Dr=4.6[Re_{jg}(r/R_c)Dr]^{0.8}$ at all flow rates, in the deceleration and falling flow regions $(Nu_r/Pr^{0.4}_r)Dr=42.7{\mid}Re_{jg}(r/R_c)Dr-345.7{\mid}^{0.3}$ at 3.6 L/min, $(Nu_r/Pr^{0.4}_r)Dr=92.4{\mid}Re_{jg}(r/R_c)Dr-16.8{\mid}^{0.2}$ at 4.6 L/min, and $(Nu_r/Pr^{0.4}_r)Dr=322.4{\mid}Re_{jg}(r/R_c)Dr-536.2{\mid}^{0.01}$ at 5.6 L/min.

Unstable Modes of Impinging Circular Jets (원형 충돌제트의 불안정 모드)

  • 권영필;임정빈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.551-556
    • /
    • 1997
  • Based on the experiment for the frequency characteristics and the feedback theory of the impinging-tones, the unstable characteristics of the symmetric mode is analyzed among the various unstable modes of circular impinging jets. There are two different symmetric modes; one is the low-frequency mode S1 due to the vortex at the outside of the jet and the high-frequency mode S2 due to the inside vortex. Each mode has its own characterictics of convection speed decreasing with frequency.

  • PDF

Three-Dimensional Flow Characteristics of a Circular Impinging Jet Normally Oriented to Crossflow (주유동에 수직으로 분사되는 원형 충돌제트의 3차원 유동특성)

  • Lee, Sang Woo;Jeong, Chul Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1735-1745
    • /
    • 1998
  • Oil-film surface flow visualizations and three-dimensional flow measurements using a straight five-hole probe have been conducted for a circular impinging jet which is normally oriented to the crossflow in a channel. Throughout the experiments, the ratio of channel height to injection hole diameter, H/D, is fixed to be 1.0, and blowing ratio is varied to be 1.0, 2.0, 3.0 and 4.0. From the surface flow visualizations for both top wall(target plate) and bottom wall, impinging jet region on the target plate can be clearly identified, and for the small value of H/D = 1.0, presence of the bottom wall changes the near-hole flow structure, significantly. The three-dimensional flow measurements show that in the dawnstream region of the injection hole, there exist a pair of counter-rotating vortices, called "scarf vortices", and the strength of the vortices strongly depends on the blowing ratio. In addition, a new flow model in the flow symmetry plane has been proposed for H/D = 1.0.

Measurement of the Local Heat Transfer Coefficient on a Concave Surface with a Turbulent round Impinging Jet (오목표면에 분사되는 난류원형충돌제트에 대한 국소열전달계수 측정에 관한 연구)

  • Lim, K.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.112-119
    • /
    • 1995
  • Measurements of the local heat transfer coeffcients on a spherically concave surface with a round impinging jet are presented. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystals for the measurement of the surface temperature. The Reynolds numbers used were 1,000, 23,000 and 50,000 and the nozzle-to-jet distance was L/d=2, 4, 6, 8, 10. Presented results are compared to previous measurements for flat plate. In the experiment, the local heat transfer Nusselt numbers on a concave surface are higher than those on a flat plate. Maximum Nusselt number at all region occured at L/d=6 and second maximum in the Nusselt number occured at R/d=2 for both Re=50,000 and Re=23,000 in case of L/d=2 and for only Re=50,000 in case of L/d=4. All other cases exhibit monotonically decreasing value of the Nusselt number along the curved surface.

  • PDF

An experimental study on the heat transfer and turbulent flow of round jet impinging the plate with temperature gradient (온도구배를 갖는 평판에 대한 원형 충돌제트의 열전달 및 난류유동에 관한 실험적 연구)

  • 한충호;이계복;이충구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.855-860
    • /
    • 1999
  • An experimental study of jet impingement on the surface with linear temperature gradient is conducted with the presentation of the turbulent characteristics and the heat transfer rates measured when this jet impinges normally to a flat plate. The jet Reynolds number ranges from 30,000 to 90,000, the temperature gradient of the plate is 2~$4.2^{\circ}C$/cm and the dimensionless nozzle to plate distance(H/D) is from 6 to 10. The results show that the peak of heat transfer rate occurs at the stagnation point, and the heat transfer rate decreases as the radial distance from the stagnation point increases. A remarkable feature of the heat transfer rate is the existence of the second peak. This is due to the turbulent development of the wall jet. Maximum heat transfer rate occurs when the axial distance from the nozzle to nozzle diameter(H/D) is 8. The heat transfer rate can be correlated as a power function of Prandtl number, Reynolds number and the dimensionless nozzle to plate distance(H/D). It has been found that the heat transfer rate increases with increasing turbulent intensity.

  • PDF