• Title/Summary/Keyword: 원통형 콘크리트 사일로

Search Result 2, Processing Time 0.019 seconds

Structural Analysis of the Pre-weakening of a Cylindrical Concrete Silo for the Application of Overturning Explosive Demolition Method (원통형 콘크리트 사일로의 발파해체 전도공법 적용을 위한 사전취약화 구조해석)

  • Choi, Hoon;Kim, Hyo-Jin;Park, Hoon;Yoon, Soon-Jong
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.12-18
    • /
    • 2009
  • Recently, several cases of destruction of old cylindrical silos by explosive demolition method have been reported. This study deals with the subject concerning the pre-weakening of a cylindrical concrete silo for the application of overturning explosive demolition method. In the past, the pre-weakening operation of structure in explosive demolition has been done by use of some empirical methods. These empirical approaches, however, have possibilities of unexpected accidents. In order to provide a guideline for the pre-weakening of cylindrical silos and similar structures, this paper shows the result of a case study, in which the instability of a silo due to pre-weakening is investigated by a numerical structural analysis before actually conducting pre-weakening and demolition operations.

The Effect of Stage of Maturity on the Composition and Feeding Value of Silage (생육시기가 Silage의 사용가치에 미치는 영향)

  • 신정남;윤익석
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.4 no.1
    • /
    • pp.41-60
    • /
    • 1983
  • Experiments were conducted to study the effect of stage of maturity at harvest on the quality of silage. Herbage samples taken from the barley plant, rye plant, wheat plant, oat plant, Orchardgrass, Italian ryegrass, a mixed grass sward of Orchardgrass and Italian ryegrass and corn plant at different stages of maturity and ensiled in order to evaluate the effect of maturity on the chemical composition and feeding value as well as digestibility using sheep. Forage material were ensiled in small concrete silo. 1. The dry matter yield per 10a increased with advancing the maturity. Yield of brarley plant was 404, 635 and 900 kg at heading, milk and milk dough stage, respectively. Rye plant yield was 279, 589, 708, 10,000, 1,265, 1,376 and 1,492 kg at booting, before heading, early heading, late heading, early flowering, late flowering and after flowering stage, respectively. Italian ryegrass yield was 355, 613, 844 and 1,109 kg at vegetative, booting, heading and flowering, respectively. Orchardgrass/Italian ryegrass production was 477, 696, 891 and 1,027 kg at before was 458, 1,252, 1,534, 1,986 and 2,053 kg at tassel, early milk, yellow ripe and ripe stage, respectively. 2. Dry matter content increased with advancing maturity, but crude protein declined markedly. The NFE content decreased with advancing maturity of all the herbages except corn plant where NFE content increased, but corn plant increased. The content of crude fiber increased with advancing maturity except corn plant. The content of crude ash decreased with advancing maturity. In the rye plant, the content of neutral detergent fiber (NDF), acid detergent fiber (ADF) and cellulose increased with advancing maturity. 3. In vitro dry matter digestibilities of the rye plant was 53.6, 54.1, 50.7, 47.1, 44.9, 40.1 and 38.9% booting, before hcading, early heading, late heading, early flowering, late flowering and after flowering stage, respectively. The regression equation was $Y=56.22-0.74X+0.009X^2$ (X=cutting date from the first cut, Y=dry matter digestibilities). 4. In vitro digestible dry matter yield (kg/10a) of rye plant increased with advancing maturity, but declined from the flowering stage. The regression equation was $Y=168.88+26.09X-0.41X^2$ (X=cutting date from the first cut). 5. In vitro digestibility of dry matter in the corn plant was 69.2, 71.5, 69.8 and 69.9% at tassel, early milk, milk and yellow ripe stage, respectively. 6. The digestibility of crude protein and crude fiber of all plants decreased with advancing matuity, but NFE of the barley and corn generally increased. 7. The TDN contents on the dry matter basis decreased, but those of barley and corn silage were not different. TDN content of barley was 57.8, 57.1 and 57.9% at heading, milk and milk dough stage, respectively. That of rye silage was 50.0, 27.2 and 43.7% at early flowering, after flowering and milk stage, respectively. Italian ryegrass silage was 67.9, 63.7, and 54.9% at before heading, early heading and after heading, respectively. In case of Orchardgrass silage the TDN was 54.8, 52.9 and 46.1% at after heading, after flowering and milk, respectively. Corn shows TDN value of 59.5, 62.8 and 61.6% at milk, yellow ripe and ripe, respectively. 8. The pH value increased slightly by advancing maturity. 9. the content of organic acid decreased by advancing maturity and also increasing the DM content.

  • PDF