• Title/Summary/Keyword: 원통형 정착구

Search Result 2, Processing Time 0.016 seconds

Ultimate Behavior of Steel Beam Strengthened with External Tendonand Cylindrical Anchorage (원통형 정착구를 사용하고 외부 긴장재로 보강된 강재보의 극한거동)

  • Choe, Dong-Ho;Jeong, Sang-Hwan;Jung, Jae-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.102-110
    • /
    • 2006
  • This paper examines experimentally the ultimate behavior of I-type steel beam strengthened with external tendon and cylindrical anchorage and analyzes the strengthening effect on the parameters such as initial tendon force, eccentricity, number of strands, and strand areas. The experiment demonstrated that increasing the number of strands, strand areas and eccentricity is more effective than increasing initial tendon force. The proposed cylindrical anchorage system has advantages in applying these parameters. The results showed that the cylindrical anchorage system is efficient and applicable to strengthen steel beam.

A Numerical Model for Predicting the Radial Power Profile in CANDU-PHWR Fuel Pellet (CANDU-PHWR 핵연료 소결체의 반경방향 출력분포 수치모형)

  • Woan Hwang;Suk, Ho-Chun;Jae, Won-Mok
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.444-455
    • /
    • 1991
  • An accurate and fast running NEDAR model for calculating radial power profile throughout fuel life in both solid and annular pellets for existing and advanced CANDU-PHWR-fuel was developed in this work. This model contains resultant flux depression equations and neutron depression data tables which have been developed for CANDU-PHWR fuel of pellet with the diameter 8.0 to 19.5 mm and enrichment 0.71-6.0 wt % U-235, over a bumup range of 0 to 840 MWh /kgU (35000 MWD/T). In order to obtain the neutron flux distribution in the fuel pellet, the CE-HAMMER physics code was run for a neutron flux spectrum appropriate to a CANDU-PHWR to give predictions of radial power profile for several ranges of fuel design parameters. The results, which were calculated by the CE-HAMMER physics code, were fitted to an equation which is solved in terms of Bessel and exponential functions in order to obtain the parameters, $textsc{k}$, $\beta$ and λ in the resultant equation. The present NEDAR model produce a radial profile which, when normalized to unity at the pellet surface, is slightly higher than the profile of the original ELESIM data table. The predictions of the fission gas release by KAFEPA-NEDAR are in slightly better agreement with the experiments than those of ELESIM. The NEDAR model described in this study has been shown to provide an effective, reliable, and accurate method for determining radial power profiles in CANDU-PHWR fuel rods without incurring a significant increase in computing time.

  • PDF