• Title/Summary/Keyword: 원지반 부착

Search Result 8, Processing Time 0.018 seconds

Behavior Characteristics of Precast Concrete-Panel Retaining Wall Adhered to In-situ Ground through Large Scaled Load Test (대형재하시험을 통한 원지반 부착식 패널옹벽의 거동특성)

  • Shin, Yuncheol;Min, Kyongnam;Kim, Jinhee;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.45-53
    • /
    • 2016
  • A precast panel wall system resists against the horizontal earth pressure by increasing the shear strength of ground by reinforcement connected to the panel. The application of precast panel wall system is growing to lately minimize the earth work and environmental damage caused by large cut slope and to use the limited land effectively. The ground adhered panel wall system is the construction method that has the panel engraved with natural rock shape to improve the landscape. This system is developed to complete Top-Down method, and it is possible to have vertical cut, and to adhere to in-situ ground, improve construction ability by minimizing the ground relaxation and exclusion the trench and backfill process. In this study the field tests were performed to verify the construction ability about the vertical cut and complete Top-Down process and the construction behavior of ground adhered panel wall system was analyzed by large scale loading test and measurement results during loading test.

Field Application of a Precast Concrete-panel Retaining Wall Adhered to In-situ Ground (원지반 부착식 판넬옹벽의 현장 적용성 평가)

  • Min, Kyoung-Nam;Lee, Jae-Won;Lee, Jung-Gwan;Kang, In-Kyu;Ahn, Tae-Bong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.51-61
    • /
    • 2016
  • New building methods are needed to aid increased inner-city redevelopment and industrial construction. A particular area of improvement is the efficient use of cut slopes, with the minimization of associated problems. A retaining wall of precast panels can resist the horizontal earth pressure by increasing the shear strength of the ground and reinforcing it through contact with the panels. Precast panels allow quick construction and avoid the problem of concrete deterioration. Other problems to be solved include the digging of borrow pits, the disposal of material cut from the slope, and degradation of the landscape caused by the exposed concrete retaining wall.This study suggest the methods of improvement of an existing precast panel wall system by changing the appearance of the panels to that of natural rock and improving the process of adhering the panel to a vertical slope. The panels were tested in the laboratory and in the field. The laboratory test verified their specific strength and behavior, and the field test assessed the panels' ground adherence at a vertical cutting. Reinforcement of the cutting slope was also measured and compared with the results of 3D numerical analysis. The results of laboratory test, identified that the shear bar increase the punching resistance of panel. And as a results of test construction, identified the construct ability and field applicability of the panel wall system adhered to in-situ ground. In addition to that, extended measurement and numerical analysis, identified the long-term stability of panel wall system adhered to in-situ ground.

Evaluation of Drainage Capacity of Precast Concrete-panel Retaining Wall Attached to In-situ Ground Using Numerical Analysis (수치해석을 이용한 원지반 부착식 판넬옹벽의 투수성 평가)

  • Kwon, Youg Kyu;Lee, Jae Won;Hwang, Young-cheol;Ban, Hoki;Lee, Minjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • On the construction of new roads, the cut slope is inevitable and thus has been widely applied in the mountainous area. Particularly, the retaining wall with the precast concrete panel is often selected for its higher stability and mostly constructed in bottom-up method. However, the bottom-up method results in steeper slope as 1:0.05 before constructiong retaining wall and thus causes poor compaction at backfill which may induce instability during or after the construction. To overcome this problem, precast concrete panel retaining wall was attached in-situ ground (so called top-down). This paper presents the evaluation of drainage capacity of top-down method which has impermeable layer between panel and mortar being used to increase the ability of attachment of the precast concrete panel.

Development of Steel Pipe Attached PHC Piles for Increasing Base Load Capacity of Bored Pre-cast Piles (매입말뚝의 선단지지력 증대를 위한 강관 부착 PHC파일 개발)

  • Paik, Kyu-Ho;Yang, Hee-Jeong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.53-63
    • /
    • 2013
  • Bored pre-cast piles using PHC piles is widely used in foundation of building structures constructed in urban areas because noise and vibration due to pile installation are low. However, since slime is formed at the base of borehole and the density of bearing stratum surrounding the base of borehole is decreased due to stress relaxation in drilling process of bored pre-cast pile method, the base load capacity of bored pre-cast piles is very low compared to the strength of bearing stratum. In this study, a new type of PHC pile, which short steel pipe with the same diameter as the PHC pile is attached to the pile tip, is developed to increase the base load capacity of bored pre-cast piles. In order to check the effect of the use of new PHC pile on the base load capacity of bored pre-cast piles, field pile load tests are performed for bored pre-cast piles using the new and existing PHC piles. Results of the pile load tests show that the new PHC pile gives higher base load capacity to bored pre-cast piles than the existing PHC pile, since the tip of new PHC pile is penetrated to undisturbed bearing stratum passing through the slime at the base of borehole and the loosened bearing stratum under the slime by pile driving using light hammer.

Evaluation of Field Application of Precast Concrete-panel Retaining Wall attached to In-Situ Ground Using Field Test and Numerical Analysis (현장시험 및 수치해석 분석을 통한 원지반 부착식 판넬옹벽의 현장 적용성 평가)

  • Kwon, Yong Kyu;Min, Kyoung-nam;Hwang, Young-cheol;Ban, Hoki;Lee, Minjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.99-106
    • /
    • 2020
  • Man-made slope is inevitable to make a new road, which may result in environmental problems as well as collapse of slope. To prevent these problems, various methods such as geogrid reinforced retaining wall, precast concrete-panel retaining wall, and so on, have been introduced and developed. Among these methods, this paper presents the evaluation of field application of precast concrete-panel retaining wall attached to in-situ ground (so called top-down) compared to the conventional construction method of precast concrete-panel retaining wall (so called bottom-up) through the field test and numerical analysis. As a result, the safety factor of both methods in final stage is similar, however, top-down method guarantees the slope stability during the construction compared to bottom-up method.

Load transfer mechanism due to tunnel excavation in the jointed sandy ground (불연속면을 포함한 사질토 지반에서 터널 굴착에 따른 하중전이)

  • Lee, Sang-Duk;Kim, Yang-Woon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.217-226
    • /
    • 2003
  • This study is focused on the finding out load transfer mechanism in the ground near the tunnel during tunnel excavation in the jointed sandy ground. Laboratory model tests were performed on various cases of the overburden heights above tunnel crown, location, and degree of discontinuity planes. For model tests, a movable plate was installed in the midst of the bottom of sandy ground. This plate, moving downwards, was intended to model the stress relaxation during tunnel excavation. The load transfer was measured at the fixed separated bottom plates adjacent to the movable plate. As the result, the loosening zone and the load-transfer form around the tunnelling site were affected by the overburden height and the characteristics of discontinuous planes. And large loosening zone was developed along the discontinuous planes which were close to the tunnel.

  • PDF

A Study on the Strength Characteristics and Rebound Ratio with Respect to Injection Pressure of Shotcrete (숏크리트의 강도 특성과 분사압력에 대한 리바운드율 연구)

  • Jeon, Jun Tai;Moon, In Gi;Lee, Yang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.115-122
    • /
    • 2019
  • Steel Fiber Reinforced Wet-type Shotcrete improves the quality and stabilizes the tunnel by increasing the shear strength of the natural ground by constructing the concrete which attaches the fresh concrete to the predetermined position from the nozzle. The Steel Fiber Reinforced Wet-type Shotcrete improves and reinforces the strength and dynamic behavior characteristics of concrete to suppress the generation and growth of local cracks by increasing the tensile resistance ability. In addition, Steel Fiber Reinforced Wet-type Shotcrete is a shotcrete that improves tensile strength, bending strength, and crack resistance by dispersing discontinuous short steel fibers evenly in concrete. In this study, compressive strength test and bending strength test of shotcrete of NATM tunnel were measured and rebound reduction rate was measured by varying shotcrete putting pressure to 900 RPM, 1,000 RPM, and 1,100 RPM. Therefore, the data that can be applied to domestic NATM tunnel construction are presented.

Behavior Analysis of Assembling Soil Nailed Walls through Large Scaled Load Test (대형파괴재하시험을 통한 조립식 쏘일네일 벽체의 거동분석)

  • Kang, Inkyu;Kwon, Youngho;Park, Shinyoung;Ki, Minju;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.23-36
    • /
    • 2008
  • Soil nailing system can be mentioned to a method of supporting as the shear strength of in-situ soils is increased by passive inclusions. In the general soil nailing system, facing walls are used in two kind of a lattice concrete block or a cast in placed concrete wall. A case of lattice concrete blocks is used in slow slopes greater than 1(V):0.7(H). Also, a case of a cast in placed concrete wall is used in steep slopes less than 1(V):0.5(H). The cast in placed concrete walls are constructed to 30 cm thick together with a shotcrete facing. In this study, the assembling soil nailing method as a new soil nailing system will be proposed. This method is assembly construction using precast concrete panels with 20 cm thick. So, the ability of construction and the quality of facings can be improved more than a conventional soil nailing system. This method can be obtained the effects that a global slope stability increase, as precast concrete panels are immediately put on cutting face after excavating a slope. In this study, confining effects of concrete panels using the assembling soil nailing system were found out by large scaled load tests. In the tests, the load-settlement relationship to an assembling soil nailing system due to the stiff facings as concrete panels appeared to be better than a typical soil nailing system with shotcrete facings.

  • PDF