• Title/Summary/Keyword: 원주후류

Search Result 52, Processing Time 0.217 seconds

Numerical modeling of secondary flow behavior in a meandering channel with submerged vanes (잠긴수제가 설치된 만곡수로에서의 이차류 거동 수치모의)

  • Lee, Jung Seop;Park, Sang Deog;Choi, Cheol Hee;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.743-752
    • /
    • 2019
  • The flow in the meandering channel is characterized by the spiral motion of secondary currents that typically cause the erosion along the outer bank. Hydraulic structures, such as spur dike and groyne, are commonly installed on the channel bottom near the outer bank to mitigate the strength of secondary currents. This study is to investigate the effects of submerged vanes installed in a $90^{\circ}$ meandering channel on the development of secondary currents through three-dimensional numerical modeling using the hybrid RANS/LES method for turbulence and the volume of fluid method, based on OpenFOAM open source toolbox, for capturing the free surface at the Froude number of 0.43. We employ the second-order-accurate finite volume methods in the space and time for the numerical modeling and compare numerical results with experimental measurements for evaluating the numerical predictions. Numerical results show that the present simulations well reproduce the experimental measurements, in terms of the time-averaged streamwise velocity and secondary velocity vector fields in the bend with submerged vanes. The computed flow fields reveal that the streamwise velocity near the bed along the outer bank at the end section of bend dramatically decrease by one third of mean velocity after the installation of vanes, which support that submerged vanes mitigate the strength of primary secondary flow and are helpful for the channel stability along the outer bank. The flow between the top of vanes and the free surface accelerates and the maximum velocity of free surface flow near the flow impingement along the outer bank increases about 20% due to the installation of submerged vanes. Numerical solutions show the formations of the horseshoe vortices at the front of vanes and the lee wakes behind the vanes, which are responsible for strong local scour around vanes. Additional study on the shapes and arrangement of vanes is required for mitigate the local scour.

A Study on Thrust Generation by Simultaneous Flapping Airfoils in Tandem Configuration (동시에 플래핑하는 직렬배치 익형의 추력 생성 연구)

  • Lee, Gwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.32-41
    • /
    • 2006
  • In this study, the thrust generation by simultaneous flapping airfoils in tandem configuration is parametrically studied with respect to flapping frequency, amplitude and relative location. Navier-Stokes solver with overset grid topology is employed to calculate the unsteady flowfields. The computation results indicate that when the two airfoils stroke in-phase - flapping phase lag is zero - the maximum propulsive efficiency and thrust can be obtained for most frequency and amplitude range. At a flapping amplitude of 0.2 chord and a reduced frequency of 0.75, the propulsive efficiency of aft airfoil is enhanced by about 37 % compared with that of forward airfoil. However, if flapping frequency exceeds some critical value, the strength of the leading edge vortex of aft airfoil is fortified by the trailing edge vortex of the forward airfoil, resulting in poor propulsive efficiency. It is also found that out-of-phase flapping has relatively low propulsive efficiency and thrust since vortical wake of the forward airfoil interacts with the leading edge vortex of aft airfoil in the unfavorable fashion. The total thrust and propulsive efficiency are shown to decrease with the horizontal miss distance of the aft airfoil. On the contrary, the vertical miss distance has little effect on the overall aerodynamic performance.